Isotopic constraints on the Si-biogeochemical cycle of the Antarctic Zone in the Kerguelen area (KEOPS)

Estimation of the silicon (Si) mass balance in the ocean from direct measurements (Si uptake-dissolution rates .) is plagued by the strong temporal and spatial variability of the surface ocean as well as methodological artifacts. Tracers with different sensitivities toward physical and biological pr...

Full description

Bibliographic Details
Main Authors: Fripiat, François, André, Luc, Cardinal, Damien, Cavagna, Anne-Julie, Savoye, Nicolas, Dehairs, Frank
Format: Article in Journal/Newspaper
Language:English
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/187982
https://dipot.ulb.ac.be/dspace/bitstream/2013/187982/1/Elsevier_171609.pdf
Description
Summary:Estimation of the silicon (Si) mass balance in the ocean from direct measurements (Si uptake-dissolution rates .) is plagued by the strong temporal and spatial variability of the surface ocean as well as methodological artifacts. Tracers with different sensitivities toward physical and biological processes would be of great complementary use. Silicon isotopic composition is a promising proxy to improve constraints on the Si-biogeochemical cycle, since it integrates over longer timescales in comparison with direct measurements and since the isotopic balance allows to resolve the processes involved, i.e. uptake, dissolution, mixing. Si-isotopic signatures of seawater Si(OH)4 and biogenic silica (bSiO2) were investigated in late summer 2005 during the KEOPS experiment, focusing on two contrasting biogeochemical areas in the Antarctic Zone: a natural iron-fertilized area above the Kerguelen Plateau (<500m water depth) and the High Nutrient Low Chlorophyll area (HNLC) east of the plateau (>1000m water depth). For the HNLC area the Si-isotopic constraint identified Upper Circumpolar Deep Water as being the ultimate Si-source. The latter supplies summer mixed layer with 4.0±0.7molSim-2yr-1. This supply must be equivalent to the net annual bSiO2 production and exceeds the seasonal depletion as estimated from a simple mixed layer mass balance (2.5±0.2molSim-2yr-1). This discrepancy reveals that some 1.5±0.7molSim-2yr-1 must be supplied to the mixed layer during the stratification period. For the fertilized plateau bloom area, a low apparent mixed layer isotopic fractionation value (Δ30Si) probably reflects (1) a significant impact of bSiO2 dissolution, enriching the bSiO2 pool in heavy isotope; and/or (2) a high Si uptake over supply ratio in mixed layer at the beginning of the bloom, following an initial closed system operating mode, which, however, becomes supplied toward the end of the bloom (low Si uptake over supply ratio) with isotopically light Si(OH)4 from below when the surface Si(OH)4 pool is ...