Modeling the impact of hypoxia on the energy budget of Atlantic cod in two populations of the Gulf of Saint-Lawrence, Canada

International audience Like many marine species around the globe, several stocks of Atlantic cod (Gadus morhua) live in increasingly hypoxic waters. In the Gulf of Saint Lawrence (GSL) in Canada, the deep channels traversing the semi-enclosed sea exhibit year-round hypoxia, identified as one of the...

Full description

Bibliographic Details
Published in:Journal of Sea Research
Main Authors: Lavaud, Romain, Thomas, Yoann, Pecquerie, Laure, Benoît, Hugues P., Guyondet, Thomas, Flye-Sainte-Marie, Jonathan, Chabot, Denis
Other Authors: Fisheries and Oceans Canada (DFO), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), ANR-10-LABX-0019,LabexMER,LabexMER Marine Excellence Research: a changing ocean(2010)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
ACL
Online Access:https://hal.science/hal-02530668
https://hal.science/hal-02530668/document
https://hal.science/hal-02530668/file/Lavaud_etal_Modeling-impact_hypoxia_JoSR_2019.pdf
https://doi.org/10.1016/j.seares.2018.07.001
Description
Summary:International audience Like many marine species around the globe, several stocks of Atlantic cod (Gadus morhua) live in increasingly hypoxic waters. In the Gulf of Saint Lawrence (GSL) in Canada, the deep channels traversing the semi-enclosed sea exhibit year-round hypoxia, identified as one of the limiting factor for the recovery of GSL cod in its northern part. While many individuals in the northern GSL are known to venture in deeper, warmer, and more hypoxic waters of the Gulf channels, those in the southern GSL live in a shallower, colder, and more oxygenated environment. In this study, we use the modeling framework of the Dynamic Energy Budget (DEB) theory to disentangle the effects of hypoxia, temperature and food on the life-history traits of these two populations of cod in the GSL. Following recent advances by Thomas et al. (2018, this issue) on the mechanisms for the effects of hypoxia within the context of DEB theory, we implemented a correction of ingestion depending on dissolved oxygen (DO) saturation. We successfully developed and validated a set of parameters for a GSL Atlantic cod DEB model. Using simulations of historical growth trajectories from 1990 until 2004 estimated from data collected through fisheries research surveys, we found that temperature explained about half (48%) of the difference in length and 59% of the difference in mass between the two populations. The remaining proportion was attributed to exposure to hypoxia and food input. We also used our model to explore scenarios of duration, frequency, and intensity of hypoxia on cod's life-history traits, which showed that decreasing DO linearly reduces growth and reproduction while young cod seem to avoid impairing conditions resulting in limiting effects on developmental stages.