Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia

International audience Ostreid herpesvirus 1 microvariants (OsHV-1) present a serious threat to the Australian Crassostrea gigas industry. Of great concern is the propensity for mortality due to the virus recurring each season in farmed oysters. However, the source of the virus in recurrent outbreak...

Full description

Bibliographic Details
Published in:Diseases of Aquatic Organisms
Main Authors: Evans, Olivia, Paul-Pont, Ika, Whittington, Richard J.
Other Authors: The University of Sydney, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
ACL
Online Access:https://hal.science/hal-01483133
https://hal.science/hal-01483133/document
https://hal.science/hal-01483133/file/d122p247.pdf
https://doi.org/10.3354/dao03078
Description
Summary:International audience Ostreid herpesvirus 1 microvariants (OsHV-1) present a serious threat to the Australian Crassostrea gigas industry. Of great concern is the propensity for mortality due to the virus recurring each season in farmed oysters. However, the source of the virus in recurrent outbreaks remains unclear. Reference strain ostreid herpesvirus 1 (OsHV-1 ref) and other related variants have been detected in several aquatic invertebrate species other than C. gigas in Europe, Asia and the USA. The aim of this study was to confirm the presence or absence of OsHV-1 in a range of opportunistically sampled aquatic invertebrate species inhabiting specific locations within the Georges River estuary in New South Wales, Australia. OsHV-1 DNA was detected in samples of wild C. gigas, Saccostrea glomerata, Anadara trapezia, mussels (Mytilus spp., Trichomya hirsuta), whelks (Batillaria australis or Pyrazus ebeninus) and barnacles Balanus spp. collected from several sites between October 2012 and April 2013. Viral loads in non-ostreid species were consistently low, as was the prevalence of OsHV-1 DNA detection. Viral concentrations were highest in wild C. gigas and S. glomerata; the prevalence of detectable OsHV-1 DNA in these oysters reached approximately 68 and 43%, respectively, at least once during the study. These species may be important to the transmission and/or persistence of OsHV-1 in endemically infected Australian estuaries.