Overview of the First SMOS Sea Surface Salinity Products. Part I: Quality Assessment for the Second Half of 2010

International audience Multi-angular images of the brightness temperature (TB) of the Earth at 1.4 GHz are reconstructed from the Soil Moisture and Ocean Salinity (SMOS) satellite sensor data since end 2009. Sea surface salinity (SSS) products remote sensing from space is being attempted using these...

Full description

Bibliographic Details
Published in:IEEE Transactions on Geoscience and Remote Sensing
Main Authors: Reul, Nicolas, Tenerelli, Joseph, Boutin, Jacqueline, Chapron, Bertrand, Paul, Frédéric, Brion, Emilie, Gaillard, Fabienne, Archer, Olivier
Other Authors: Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Laboratoire d'Océanographie Spatiale (LOS), Collecte Localisation Satellites (CLS), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Atlantide-Altran Ouest, ALTRAN (FRANCE), Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-00717291
https://doi.org/10.1109/TGRS.2012.2188408
Description
Summary:International audience Multi-angular images of the brightness temperature (TB) of the Earth at 1.4 GHz are reconstructed from the Soil Moisture and Ocean Salinity (SMOS) satellite sensor data since end 2009. Sea surface salinity (SSS) products remote sensing from space is being attempted using these data over the world oceans. The quality of the first version of the European Space Agency operational Level 2 (L2) SSS swath products is assessed in this paper, using satellite/in situ SSS data match-ups that were collected over the second half of 2010. This database reveals that 95% of the SMOS L2 products show a global error standard deviation on the order of ~ 1.3 practical salinity scale. Simple spatiotemporal aggregation of the L2 products to generate monthly SSS maps at 1° ×1° spatial resolution reduces the error down to about 0.6 globally and 0.4 in the tropics for 90% of the data. Several major problems are, however, detected in the products. Systematically, SMOS SSS data are biased within a ~ 1500 km wide belt along the world coasts and sea ice edges, with a contamination intensity and spread varying from ascending to descending passes. Numerous world ocean areas are permanently or intermittently contaminated by radio-frequency interferences, particularly in the northern high latitudes and following Asia coastlines. Moreover, temporal drifts in the retrieved SSS fields are found with varying signatures in ascending and descending passes. In descending passes, a time-dependent strong latitudinal bias is found, with maximum amplitude reached at the end of the year. Errors in the forward modeling of the wind-induced emissivity and of the sea surface scattered galactic sources are as well identified, biasing the sss retrievals at high and low winds and when the galactic equator sources are reflected toward the sensor.