Aerobic growth index (AGI): An index to understand the impacts of ocean warming and deoxygenation on global marine fisheries resources

Ocean warming and deoxygenation are affecting the physiological performance of marine species by increasing their oxygen demand while reducing oxygen supply. Impacts on organisms (e.g., growth and reproduction) can eventually affect entire populations, altering macroecological dynamics and shifting...

Full description

Bibliographic Details
Published in:Progress in Oceanography
Main Authors: Clarke, Tayler M., Wabnitz, Colette C.C., Striegel, Sandra, Frölicher, Thomas L., Reygondeau, Gabriel, Cheung, William W.L.
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2021
Subjects:
Online Access:https://boris.unibe.ch/166720/1/clarke_po21.pdf
https://boris.unibe.ch/166720/
Description
Summary:Ocean warming and deoxygenation are affecting the physiological performance of marine species by increasing their oxygen demand while reducing oxygen supply. Impacts on organisms (e.g., growth and reproduction) can eventually affect entire populations, altering macroecological dynamics and shifting species’ distribution ranges. To quantify the effect of warming and deoxygenation on marine organisms, Penn et al. (2018) and Deutsch et al. (2020) developed two metabolic indices that integrate physiological, biogeographic and climatic data. Here, we develop an alternative index, referred to as Aerobic Growth Index (AGI) based on an approach that integrates the von Bertalanffy growth and metabolic theory. We compare the results derived from the application of AGI with those of the two previously published metabolic indices for six species: Atlantic blue crab (Callinectes sapidus), sharpsnout seabream (Diplodus puntazzo), Atlantic cod (Gadus morhua), Australian spiny lobster (Panulirus cygnus), red drum (Sciaenops ocellatus) and common cuttlefish (Sepia officinalis). The baseline (1971–2000) habitat suitability values of AGI are significantly and positively correlated with both metabolic indices (R2 ≥ 0.92). All three indices also show similar spatial patterns and magnitudes of viable habitat loss by the end of the 21st century (2071–2100) relative to baseline conditions under a high greenhouse gas trajectory (Representative Concentration Pathway 8.5). Our results support the applicability and use of AGI to better understand the impacts of warming and deoxygenation on global marine fishery resources. Given the uncertainties surrounding mechanisms linking temperature, oxygen and biogeography, there is a need for different indicators to account for these uncertainties in climate change projections.