Pixelwise immersion factor calibration for underwater hyperspectral imaging instruments
In situ spectral reflectance initially captured at high spatial resolution with underwater hyperspectral imaging (UHI) is effective for classification and quantification in oceanic biogeochemical studies; however, the measured spectral radiance is rarely used as an absolute quantity due to challenge...
Published in: | Optics Express |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Optica
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/11250/3152531 https://doi.org/10.1364/OE.523641 |
Summary: | In situ spectral reflectance initially captured at high spatial resolution with underwater hyperspectral imaging (UHI) is effective for classification and quantification in oceanic biogeochemical studies; however, the measured spectral radiance is rarely used as an absolute quantity due to challenges in calibration of UHI instruments. In this paper, a commercial UHI instrument was calibrated for radiometric flat field response and pixelwise immersion effect to support in situ measurement of absolute spectral radiance. The radiometric and immersion factor calibrations of the UHI instrument were evaluated quantitatively through comparative experiments with a spectroradiometer and a spectrometer. Results show that the immersion factor of the center pixel of the tested UHI instrument was 1.763 in pure water at 600 nm, and the averaged difference in immersion factor between the center and edge pixel of the UHI instrument in the visible light band was only 1∼3% across its half angle field of view of 35° in air. The new calibration coefficients were further used to calculate the spectral radiance of transmitted sunlight through ice algae clusters in sea ice measured by the UHI instrument during an Arctic under-ice bio-optical survey. publishedVersion |
---|