Evidence of glacier-permafrost interactions associated with hydro-geomorphological processes and landforms at Snøhetta, Dovrefjell, Norway

Glacier-permafrost interactions are investigated to understand glacial-hydrological influence along a partly glacierised valley on the NE flank of the Snøhetta massif, Dovrefjell, southern Norway. Of particular interest is how processes are controlled by a hydrological connection between landforms....

Full description

Bibliographic Details
Published in:Geografiska Annaler: Series A, Physical Geography
Main Authors: Miesen, Floreana, Dahl, Svein Olaf, Schrott, Lothar
Format: Article in Journal/Newspaper
Language:English
Published: Taylor and Francis 2021
Subjects:
Ice
Online Access:https://hdl.handle.net/11250/2986538
https://doi.org/10.1080/04353676.2021.1955539
Description
Summary:Glacier-permafrost interactions are investigated to understand glacial-hydrological influence along a partly glacierised valley on the NE flank of the Snøhetta massif, Dovrefjell, southern Norway. Of particular interest is how processes are controlled by a hydrological connection between landforms. Field mapping identified an ice-marginal landsystem comprising a polythermal glacier, a proglacial lake, an ice-cored moraine complex and a river-lake with perennial frost mounds. A clear interaction between glacial and periglacial processes was observed in transitional landforms, most prominently in the ice-cored moraine which constitutes a permafrost environment that is directly reworked by glaciofluvial processes. The role of this interaction in controlling seasonal, partial drainage of the proglacial lake was assessed using remote sensing-based observations of lake surface size evolution and seasonal surface subsidence. Results suggest a two-fold threshold for lake drainage: Depending on the dynamics of glacial discharge and active layer depth, the ice-cored moraine may either act as a barrier or a pathway to meltwater exiting the glacier. This demonstrates the importance of meltwater dynamics in controlling landform evolution in a glacial-periglacial landscape. To further assess the importance of surface and subsurface hydrology in linking glacial and periglacial domains, water stable oxygen isotope ratios across the study area were studied to map the flow of meltwater from glacier to permafrost. Results include a model of the surface and subsurface hydrology in the catchment and promote a conceptual understanding of water as a thermal, hydraulic and mechanical agent of transient glacier-permafrost interaction operating at heterogeneous timescales. publishedVersion