Aspects of in situ angular scattering measurements in contrasting waters

Rapid changes are observed in oceanic and coastal environments around the world due to global temperatures increases, ocean acidification and changing weather patterns - anthropogenic climate change. These changes have large effects on the ecosystems of the ocean. In order to understand the effects...

Full description

Bibliographic Details
Main Author: Sandven, Håkon Johan
Other Authors: orcid:0000-0002-8042-510X
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Bergen 2022
Subjects:
Online Access:https://hdl.handle.net/11250/2838054
Description
Summary:Rapid changes are observed in oceanic and coastal environments around the world due to global temperatures increases, ocean acidification and changing weather patterns - anthropogenic climate change. These changes have large effects on the ecosystems of the ocean. In order to understand the effects and possibly mitigate their consequences, it is necessary to increase and improve the environmental monitoring of the ocean. Optical properties of natural waters within the visible spectrum is closely linked to properties of phytoplankton, the foundation of oceanic ecosystems, as well as other particles on the micrometer and sub-micrometer scale in the water mass. Optical measurements can thus give us valuable information about the particle content of the water and the state of the ecosystem. The volume scattering function (VSF) is a fundamental optical property describing how much light is scattered by a medium and in what direction the light is scattered. In natural waters, by far most of the light is scattered in the very forward direction, which makes it technically challenging to measure the VSF. The LISST-VSF is the first commercially available instrument for field measurements of the VSF over a large angular domain. To trust the measurements, it is important to validate the performance of instrument and identify any error sources, in particular the valid range of the instrument, given that scattering coefficients of natural waters can span three orders of magnitude. In this thesis, I have characterised LISST-VSF measurements using both in situ measurements of highly contrasting water types, controlled laboratory measurements, and Monte Carlo simulations of instrument geometry. Similar aspects have been investigated for the LISST-200X, which measures the VSF at angles 0.04-13˚ at 670 nm. In Paper I, these two instruments are calibrated and validated using polymer beads and in situ measurements spanning from clear waters on the North Pole to highly turbid glacial meltwater. The measurements demonstrated that due ...