Ice formation at moderate supercooling in mixed-phase clouds and its link to precipitation

Ice formation in the atmosphere is important for the generation of precipitation and the radiative properties of clouds. An integrated understanding of ice formation processes is still missing. This is especially true for ice formation at low to moderate supercooling. In this mixed-phase cloud tempe...

Full description

Bibliographic Details
Main Author: Mignani, Claudia
Other Authors: Conen, Franz, Alewell, Christine, Kalberer, Markus, DeMott, Paul J.
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:https://edoc.unibas.ch/88056/
https://edoc.unibas.ch/88056/1/Dissertation_Claudia_Mignani.pdf
Description
Summary:Ice formation in the atmosphere is important for the generation of precipitation and the radiative properties of clouds. An integrated understanding of ice formation processes is still missing. This is especially true for ice formation at low to moderate supercooling. In this mixed-phase cloud temperature regime, primary ice is formed via heterogeneous ice nucleation, where ice-nucleating particles (INPs) promote freezing. Such INPs are mainly of biological origin and are present in relatively low concentration in the atmosphere. If the ice particle concentration is higher than the INP concentration, this indicates that secondary ice formation processes are active in addition to heterogeneous nucleation. Secondary ice formation processes can multiply the primary ice by up to several orders of magnitude. However, these processes are diverse and difficult to quantify. After ice formation, various other processes may occur before surface precipitation is observed. The complex chain of intertwined microphysical mechanisms that ultimately lead to precipitation can take different paths. Here we applied different approaches to obtain information on primary and secondary ice formation at moderate supercooling. In particular, we present observations of INPs active at around $-$15 °C in more than 120 aerosol samples and 220 individual dendritic ice crystals that were collected and analysed at mountain stations in the Swiss Alps during winter months of 2018 and 2019. Aerosol particle concentrations, air mass origin and precipitation history were combined to parameterise INP concentrations measured at Weissfluhjoch (2671 m a.s.l.). Primary dendritic ice crystals were quantified at Jungfraujoch (3580 m a.s.l.) using an approach that makes use of their particular and narrow growth temperature range. In addition, precipitating snow particles captured at ground level and coinciding radiosonde ascents were analysed to investigate whether mixed-phase clouds were relevant for snowfall at an Arctic site throughout a total of eight ...