Lipase immobilised on silica monoliths as continuous-flow microreactors for triglyceride transesterification
Lipase immobilised on silica monoliths has been prepared and applied as biocatalytic continuous-flow microreactors for the transesterification of tributyrin as a model bio-oil component. Candida antarctica lipase was trapped within the pores of silica monoliths, and its successful immobilisation was...
Published in: | Reaction Chemistry & Engineering |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://publications.aston.ac.uk/id/eprint/32118/ https://publications.aston.ac.uk/id/eprint/32118/1/Lipase_immobilised_on_silica_monoliths_as_continuous_flow_microreactors_for_triglyceride_transesterification.pdf |
Summary: | Lipase immobilised on silica monoliths has been prepared and applied as biocatalytic continuous-flow microreactors for the transesterification of tributyrin as a model bio-oil component. Candida antarctica lipase was trapped within the pores of silica monoliths, and its successful immobilisation was demonstrated by the hydrolysis of 4-nitrophenyl butyrate to 4-nitrophenol. Lipase immobilised on silica monoliths was active for the transesterification of tributyrin at ambient temperature, with reactivity as a function of the methanol : tributyrin ratio, flow rate, temperature, and textural properties. Monoliths with a high surface area and large meso- and macropore channels enhanced the transesterification activity through improved molecule diffusion. The optimum immobilised lipase microreactor exhibited almost quantitative ester production for >100 h at 30 °C without deactivation |
---|