Forced and Unforced Permafrost Changes in the Northern Hemisphere during 1901-2100

Permafrost regions are very sensitive to rapid changes in climate and environment. In recent decades, there has been growing interest to better understand the permafrost degradation over the Northern Hemisphere in the context of human-induced climate change. Understanding permafrost dynamics is not...

Full description

Bibliographic Details
Main Author: Guo, Hong
Format: Text
Language:unknown
Published: ScholarWorks@UARK 2021
Subjects:
Online Access:https://scholarworks.uark.edu/etd/4294
https://scholarworks.uark.edu/context/etd/article/5844/viewcontent/Guo_uark_0011A_14589.pdf
Description
Summary:Permafrost regions are very sensitive to rapid changes in climate and environment. In recent decades, there has been growing interest to better understand the permafrost degradation over the Northern Hemisphere in the context of human-induced climate change. Understanding permafrost dynamics is not only important for infrastructure but also for environmental protection in cold regions. In-situ permafrost measurements are important for assessing permafrost conditions. However, direct permafrost observations are sparse and asymmetrical in both spatial and temporal coverage. Active layer thickness (ALT) modeling is another approach that can overcome many of these limitations, but the models have large uncertainty in predicting future permafrost changes.This doctoral research firstly investigated the impacts of climate forcings on active layer thickness changes over Alaska since 1990 based on data derived from the in-situ Circumpolar Active Layer Monitoring (CALM) measurements. The results suggested that changes in ALT over Alaskan permafrost regions were not only controlled by warming in regional temperature but were also influenced by large-scale atmospheric and oceanic forcings, particularly in the North Atlantic and North Pacific. Meanwhile, an obvious gap was found between simulated and observed active layer thickness, indicating potential uncertainty in model simulations. To quantify these uncertainties, detection and attribution analyses were applied based on simulations made with CESM-LENS and CMIP6 models across the permafrost regions in the northern hemisphere. For a single model (CESM), the multiple ensemble simulations average showed that the deepening ALT during the historical period was generally small over most of the Northern Hemisphere permafrost zone, except in the western Siberia, Mongolia, and portions of the Canadian Arctic. The deepening trends in ALT are projected to increase under the most extreme RCP8.5 scenario and would be two to four times greater than the observed historical trend in ...