Aerosol Properties and Their Influences on Marine Boundary Layer Cloud Condensation Nuclei over the Southern Ocean

Five overcast marine stratocumulus cases during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) aircraft field campaign were selected to examine aerosol and cloud condensation nuclei (CCN) properties with cloud influence. The Aitken- and accumulation-mode aerosols...

Full description

Bibliographic Details
Published in:Atmosphere
Main Authors: Zhang, X., Dong, X., Xi, B., Zheng, X.
Other Authors: Department of Hydrology and Atmospheric Science, The University of Arizona
Format: Article in Journal/Newspaper
Language:English
Published: Multidisciplinary Digital Publishing Institute (MDPI) 2023
Subjects:
Online Access:http://hdl.handle.net/10150/673588
https://doi.org/10.3390/atmos14081246
Description
Summary:Five overcast marine stratocumulus cases during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) aircraft field campaign were selected to examine aerosol and cloud condensation nuclei (CCN) properties with cloud influence. The Aitken- and accumulation-mode aerosols contributed approximately 70% and 30% of the total aerosols, respectively. The aerosol properties before and after periods of drizzle were investigated using in situ measurements during one case. Sub-cloud drizzle processes impacted accumulation-mode aerosols and CCN distribution. There was a nearly linear increase in CCN number concentration (NCCN) with supersaturation (S) during the ‘before drizzle’ period, but this was not true for the ‘after drizzle’ period, particularly when S > 0.4%. Using the hygroscopicity parameter (κ) to quantitatively investigate the chemical cloud-processing mechanisms, we found that higher κ values (>0.4) represent cloud-processing aerosols, while lower κ values (<0.1) represent newly formed aerosols. When the supersaturation is less than the Hoppel minimum (0.22%), cloud processing is dominant, whereas sea-spray aerosols are dominant contributors to CCN activation when S exceeds 0.22% but is less than 0.32%, the effective supersaturation threshold. Sea salt is considered a non-cloud-processing aerosol and is large and hygroscopic enough to form cloud droplets. © 2023 by the authors. Open access journal This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.