Speleothem Record of Southern Arizona Paleoclimate, 54 to 3.5 ka

In the semi-arid southwestern US, the lack of continuous records of climate over the last glacial cycle has precluded a complete understanding of the rates and timing of past regional changes in climate. Speleothems can provide high-resolution, continuous record of moisture, temperature, and, potent...

Full description

Bibliographic Details
Main Author: Wagner, Jennifer Diane Miller
Other Authors: Cole, Julia E., Patchett, P. Jonathan, Beck, J. Warren, Quade, Jay
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Arizona. 2006
Subjects:
Online Access:http://hdl.handle.net/10150/195075
Description
Summary:In the semi-arid southwestern US, the lack of continuous records of climate over the last glacial cycle has precluded a complete understanding of the rates and timing of past regional changes in climate. Speleothems can provide high-resolution, continuous record of moisture, temperature, and, potentially, vegetation variations and can be precisely dated by uranium-series disequilibrium. We have produced two U-series dated speleothem δ¹⁸O records from Cave of the Bells (COB). COB is located in Santa Cruz County, Arizona on the east side of the Santa Rita Mountains (31°45'N, 110°45'W; 1700 m). The glacial speleothem δ¹⁸O record (53 to 8.5 ka) confirms that deglaciation in the Southwest proceeded via a stepwise shift, mirroring the Bølling-Allerød warming and Younger Dryas cooling, beginning around 15 ka. There is no evidence of early warming before the decline of the large ice sheets. In Marine Isotope Stage 3 (MIS3; 53 to 30 ka), we observe millennial variations similar to Dansgaard-Oeschger (DO) events first seen in Greenland ice core δ¹⁸O records with wet/cold conditions indicated by our cave record during glacial stadials (cold periods) and dry/warm during glacial interstadials (warmer periods). High-resolution U-series dating allows for refinement of the timing of DO events in MIS3, and spectral analysis confirms the presence of a 1515-year climate cycle during this time. The δ¹⁸O data from a Holocene stalagmite (~6.9 to 3.5 ka) average ~3‰ higher than modern and exhibit substantial multidecadal to multicentury variation. We propose that in addition to drier/warmer conditions in the winter, a stronger summer monsoon and perhaps warmer summer temperatures supplied waters with higher δ¹⁸O values to the cave during the mid-Holocene. Spectral analysis of early part of the δ¹⁸O record reveals variability at periods of 233 years and at 142 and 52. After ~4.9 ka a prominent shift from centennial to multidecadal periods of variability (a 70 to 50-year cycle) is observed and there is a slight decrease in average δ¹⁸O values. This shift is coincident with a hypothesized increase in El Niño activity, which is correlated to wet winters in the modern southwest, in the tropical Pacific at ~5 ka.