Climate change influences chlorophylls and bacteriochlorophylls metabolism in hypersaline microbial mat

International audience This study aimed to determine the effect of the climatic change on the phototrophic communities of hypersaline microbial mats. Ocean acidification and warming were simulated alone and together on microbial mats placed into mesocosms. As expected, the temperature in the warming...

Full description

Bibliographic Details
Published in:Science of The Total Environment
Main Authors: Mazière, Camille, Bodo, M., Perdrau, M.A., Cravo-Laureau, Cristiana, Duran, Robert, Dupuy, C., Hubas, Cédric
Other Authors: LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN), Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Station de Biologie Marine de Concarneau, Direction générale déléguée à la Recherche, à l’Expertise, à la Valorisation et à l’Enseignement-Formation (DGD.REVE), Muséum national d'Histoire naturelle (MNHN)-Muséum national d'Histoire naturelle (MNHN)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-03328597
https://hal.science/hal-03328597/document
https://hal.science/hal-03328597/file/1-s2.0-S0048969721048622-am.pdf
https://doi.org/10.1016/j.scitotenv.2021.149787
Description
Summary:International audience This study aimed to determine the effect of the climatic change on the phototrophic communities of hypersaline microbial mats. Ocean acidification and warming were simulated alone and together on microbial mats placed into mesocosms. As expected, the temperature in the warming treatments increased by 4 °C from the initial temperature. Surprisingly, no significance difference was observed between the water pH of the different treatments despite of a decrease of 0.4 unit pH in the water reserves of acidification treatments. The salinity increased on the warming treatments and the dissolved oxygen concentration increased and was higher on the acidification treatments. A total of 37 pigments were identified belonging to chlorophylls, carotenes and xanthophylls families. The higher abundance of unknown chlorophyll molecules called chlorophyll derivatives was observed in the acidification alone treatment with a decrease in chlorophyll a abundance. This change in pigmentary composition was accompanied by a higher production of bound extracellular carbohydrates but didn't affect the photosynthetic efficiency of the microbial mats. A careful analysis of the absorption properties of these molecules indicated that these chlorophyll derivatives were likely bacteriochlorophyll c contained in the chlorosomes of green anoxygenic phototroph bacteria. Two hypotheses can be drawn from these results: 1/ the phototrophic communities of the microbial mats were modified under acidification treatment leading to a higher relative abundance of green anoxygenic bacteria, or 2/ the highest availability of CO2 in the environment has led to a shift in the metabolism of green anoxygenic bacteria being more competitive than other phototrophs.