Spatial and temporal variations in slip behavior beneath Alaska-Aleutian subduction zone

Dissertation (Ph.D.) University of Alaska Fairbanks, 2018 Characterizing spatial and temporal variations of slip behavior observed along subduction faults is of great significance for understanding the dynamics of subduction zones, features of great subduction zone earthquakes and deformation patter...

Full description

Bibliographic Details
Main Author: Li, Shanshan
Other Authors: Freymueller, Jeffrey T., Christensen, Douglas, Tape, Carl, West, Michael
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/11122/9689
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 2018 Characterizing spatial and temporal variations of slip behavior observed along subduction faults is of great significance for understanding the dynamics of subduction zones, features of great subduction zone earthquakes and deformation patterns across the subduction plate boundary through the seismic cycle. The Alaska-Aleutian subduction zone is one of the most tectonically active margins in the world. Great earthquakes and slow slip events recorded in this area are closely related in space. An increasingly dense array of Global Positioning System (GPS) receivers measures surface deformation at sites with high accuracy and provides a perfect tool for estimating the slip distribution on the plate boundary. GPS observations show that the motion of the Earth is not entirely linear: the long-term steady motion is interrupted by events like earthquakes, slow slip events (SSEs) and deformation of volcanoes, etc. Two long-term SSEs were detected in Lower Cook Inlet, Alaska (1992.0-2004.8 and 2009.85-2011.81) by inverting the slip distributions from GPS site velocities. The occurrence of SSEs based on the estimated slip distribution patterns provides strong evidence for the transition from stick-slip behavior to episodes and continuous aseismic creep on the subduction plate interface. Coulomb stressing rate changes (CSRC) due to the two detected long-term SSEs indicate that regions in the shallow slab (30-60 km) that experience significant increase in CSRC show an increase in seismicity rate during SSE periods. The modified quantitative rate/state stress transfer model suggests that the SSEs increase stress on surrounding faults, thereby increasing the seismicity rate even though the ratio of the SSE induced stressing rate to the background stressing rate is small. The SSEs were shown to cause significant stress changes in the seismogenic zone. This highlights the importance of exploring the relationship between SSEs and earthquakes, as well as how this ...