Life History, Demography, And Ecology Of The Spiny Dogfish "Squalus Acanthias" In The Gulf Of Alaska

Dissertation (Ph.D.) University of Alaska Fairbanks, 2010 The spiny dogfish (Squalus acanthias) is a small, cosmopolitan shark species, common in sub-tropical and sub-arctic waters. The species is often targeted commercially in most areas of the world throughout its range, and in some cases it is ov...

Full description

Bibliographic Details
Main Author: Tribuzio, Cindy A.
Other Authors: Kruse, Gordon, Fujioka, Jeff, Gallucci, Vince, Hillgruber, Nicola, Lowe, Chris, Woodby, Doug
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/11122/9066
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 2010 The spiny dogfish (Squalus acanthias) is a small, cosmopolitan shark species, common in sub-tropical and sub-arctic waters. The species is often targeted commercially in most areas of the world throughout its range, and in some cases it is overfished or the subject of conservation concern. In the Gulf of Alaska, spiny dogfish are not targeted and not generally retained, but incidental catches can be high for this schooling species. Previously, biological parameters for spiny dogfish in the Gulf of Alaska were assumed from estimates for this specie's neighboring areas, including British Columbia and Washington State. The purpose of this study was to examine spiny dogfish in the Gulf of Alaska and estimate important parameters for stock assessment in four stages: (1) general biology, distribution, and life history; (2) modeling age and growth; (3) population demographic modeling; and (4) ecological interactions revealed by diet analysis. Spiny dogfish are similar in length in the Gulf of Alaska to neighboring regions, but mature at larger sizes and have a greater fecundity than reported elsewhere. There is high natural variability in estimated ages for the species, which is reflected in the poor fit of the growth models, possibly owing to measurement error from using the dorsal fin spine as the aging structure. A two-phase growth model provided the statistical best fit. However, questions were raised about the biological interpretation of the model and whether more traditional models (e.g., von Bertalanffy and Gompertz) may be more appropriate. Using the life-history and growth data, Leslie matrix type age- and stage-based demographic models were created to estimate sustainable fishing mortality rates and to examine the risk of harvest scenarios. Female Gulf of Alaska spiny dogfish can support up to a 3% annual harvest rate; fisheries that target juveniles have the greatest risk of population decline below threshold levels. Spiny dogfish are generalist ...