Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta

We analyzed bulk carbon and nitrogen stable isotope values (delta C-13 and delta N-15) of the benthic clams Nuculana radiata and Macoma moesta from the Bering Sea during controlled feeding experiments (spring of 2009 and 2010) using isotopically labeled sea ice algae. The aim was to determine the ab...

Full description

Bibliographic Details
Main Authors: Weems, Jared, Iken, Katrin, Gradinger, Rolf, Wooller, Matthew
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2012
Subjects:
Online Access:http://hdl.handle.net/11122/4660
Description
Summary:We analyzed bulk carbon and nitrogen stable isotope values (delta C-13 and delta N-15) of the benthic clams Nuculana radiata and Macoma moesta from the Bering Sea during controlled feeding experiments (spring of 2009 and 2010) using isotopically labeled sea ice algae. The aim was to determine the ability of these clam species to assimilate carbon and nitrogen from sea ice algae. Specimens were collected in the Bering Sea and placed into jars without sediment (2009, N. radiata only) or into natural sediment cores (2010, both species). The clams were offered isotopically enriched (both C and N) or non-enriched algal feeds for time periods of 42 (2009) and 18 d (2010). Isotopic assimilation rates for carbon and nitrogen were calculated using the change in the isotope ratios of the clams over the experimental time. N. radiata in the jar experiments had slow isotopic assimilation rates (0.01 to 0.23 parts per thousand d(-1)), with solvent-extractable organic matter/lipids taking up both of the isotope markers fastest and muscle tissue the slowest. Lipids may thus be particularly suitable to track the immediate ingestion of sea ice algal production in benthic consumers. M. moesta showed 30% higher isotopic assimilation compared to N. radiata in sediment cores, likely reflecting the different feeding behaviors of these two species. Based on our results, N. radiata is likely better able to utilize food sources buried in the sediment and may be more competitive over the sediment surface feeding M. moesta under conditions of reduced ice algal production in the northern Bering Sea. (C) 2012 Elsevier B.V. All rights reserved. This project was undertaken as a part of the National Science Foundation funded Bering Sea Ecosystem Study (BEST Project) #0732767awarded to R. Gradinger, K. Iken, and B. Bluhm at the University of Alaska Fairbanks. Additional research funding to J. Weems was provided by the UAF Center for Global Change Student Research Grant with funds from the Cooperative Institute for Alaska Research and the ...