Induction of heat shock proteins in cold- adapted and coldacclimated Fishes

Thesis (M.S.) University of Alaska Fairbanks, 2014 I examined the effects of oxidative stress and changes in temperature on heat shock protein (Hsp) levels in cold-adapted and cold-acclimated fishes. Adaptation of Antarctic notothenioids to cold temperature is correlated with high levels of Hsps, th...

Full description

Bibliographic Details
Main Author: Teigen, Laura Elizabeth
Other Authors: O'Brien, Kristin, Taylor, Barbara, Podlutsky, Andrej
Format: Thesis
Language:unknown
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/11122/4557
Description
Summary:Thesis (M.S.) University of Alaska Fairbanks, 2014 I examined the effects of oxidative stress and changes in temperature on heat shock protein (Hsp) levels in cold-adapted and cold-acclimated fishes. Adaptation of Antarctic notothenioids to cold temperature is correlated with high levels of Hsps, thought to minimize cold-induced protein denaturation. Hsp70 levels were measured in red- and white-blooded Antarctic notothenioid fishes exposed to their critical thermal maximum (CTMax), 4°C warm acclimated, and notothenioids from different latitudes. I determined the effect of cold acclimation on Hsp levels and the role of sirtuins in regulating Hsp expression and changes in metabolism in threespine stickleback, Gasterosteus aculeatus, cold-acclimated to 8°C. Levels of Hsps do not increase in Antarctic notothenioids exposed to their CTMax, and warm acclimation reduced levels of Hsp70. Hsp70 levels were higher in Antarctic notothenioids compared to a temperate notothenioid and higher in white-blooded notothenioids compared to red-blooded notothenioids, despite higher oxidative stress levels in red-blooded fish, suggesting Hsp70 does not mitigate oxidative stress. Cold acclimation of stickleback resulted in tissue-specific increases in some Hsps and sirtuins. My research indicates that cold acclimation increases Hsp levels, and moderate increases in temperature reduce Hsp levels in cold-adapted fishes. Together, these data lend support to the hypothesis that cold denatures proteins.