Processes in the percolation zone in southwest Greenland: challenges in modeling surface energy balance and melt, and the role of topography in the formation of ice slabs

Dissertation (Ph.D.) University of Alaska Fairbanks, 2022 Increased surface melt in the percolation zone of Greenland causes significant changes in the firn structure, directly affecting the surface mass balance of the ice sheet and the amount and timing of meltwater runoff. Thick impermeable layers...

Full description

Bibliographic Details
Main Author: Covi, Federico
Other Authors: Hock, Regine, Tedesco, Marco, Truffer, Martin, Sturm, Matthew
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/11122/13116
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 2022 Increased surface melt in the percolation zone of Greenland causes significant changes in the firn structure, directly affecting the surface mass balance of the ice sheet and the amount and timing of meltwater runoff. Thick impermeable layers, referred to as ice slabs, are preventing melt water percolation and refreezing in the firn favoring lateral movement of water and direct runoff to the oceans. The objective of this dissertation is to enhance the understanding of these processes by modeling the surface energy balance and resulting melt, and investigating the spatial and temporal changes in firn surface properties and associated water movement in the percolation zone in southwest Greenland. Extensive fieldwork was carried out in this region between 2017 and 2019, including a collection of 19 shallow firn cores at several sites and the operation of two weather stations. A surface-energy balance model was forced with automatic weather station data from two sites (2040 and 2360 m a.s.l.). Extensive model validation and sensitivity analysis reveal that the skin layer formulation used to compute the surface temperature by closing the energy balance leads to a consistent overestimation of melt by more than a factor of two or three depending on the site. The results indicate that the energy available for melt is highly sensitive to small changes in surface temperature and suggests caution is needed in modeling Greenland melt from weather data. Furthermore, the spatial and temporal variability in air temperature bias of two regional climate models, MAR and RACMO, is assessed over the entire ice sheet. Model results are compared to 35 automatic weather stations over more than 25 years. Both models perform well in the ablation zone (< 1500 m a.s.l.) where most of the melt happens. However, a warm bias is found in both MAR and RACMO at the higher elevations percolation zone (> 1500 m a.s.l.). The seasonal evolution and interannual variability of ...