Experimental investigation of nonthermal enhanced oil recovery techniques for improving oil recovery on Alaska North Slope

Dissertation (Ph.D.) University of Alaska Fairbanks, 2022 Exploitation of viscous and heavy oils on Alaska North Slope (ANS) requires nonthermal enhanced oil recovery (EOR) techniques. Currently, three nonthermal EOR methods, including solvent injection, low salinity water (LSW) flooding, and low sa...

Full description

Bibliographic Details
Main Author: Cheng, Yaoze
Other Authors: Zhang, Yin, Dandekar, Abhijit, Ahmadi, Mohabbat, Li, Xiaoli
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/11122/13009
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 2022 Exploitation of viscous and heavy oils on Alaska North Slope (ANS) requires nonthermal enhanced oil recovery (EOR) techniques. Currently, three nonthermal EOR methods, including solvent injection, low salinity water (LSW) flooding, and low salinity polymer (LSP) injection, have been proved to be useful on ANS. ANS viscous and heavy oils can be developed effectively by combining those three nonthermal EOR techniques. In this dissertation, lab experiments have been conducted to investigate the potential of the proposed hybrid nonthermal EOR techniques, including HSW (high salinity water)-LSW-softened LSW flooding, HSW-LSW-LSP flooding, CO₂-enriched LHS (light hydrocarbon solvent)-alternating-LSW flooding, LHS-alternating-LSW flooding, CO₂-enriched LHS (light hydrocarbon solvent)-alternating-LSP flooding, and LHS-alternating-LSP flooding, to improve ANS viscous oil recovery. Besides, the effect of essential clay minerals, including sodium-based montmorillonite (Na-Mt), calcium-based montmorillonite (Ca-Mt), illite, and kaolinite, on LSW flooding has been examined. In addition, the CO₂ influence on solvent-alternating-LSP flooding in enhancing ANS viscous oil recovery has been investigated. Furthermore, the blockage issue during CO₂-enriched LHS-alternating-LSP flooding has been investigated, and its solution has been proposed and analyzed. The EOR potential of the proposed hybrid EOR techniques has been evaluated by conducting coreflooding experiments. Additionally, relative permeability, swelling property, zeta potential, interfacial tension (IFT), and pressure-volume-temperature (PVT) tests have been conducted to reveal the EOR mechanisms of the proposed hybrid EOR techniques. Moreover, water ion analysis of DI-water/natural-sand and DI-water/natural-sand/CO₂ systems has been carried out to reveal the complex reaction between CO₂, sand, and LSP solution. It was found that, compared to conventional waterflooding, all the proposed hybrid EOR techniques ...