Study on emulsification/demulsification behavior and mechanism of produced liquid from polymer flooding on Alaska North Slope

Dissertation (Ph.D.) University of Alaska Fairbanks, 2022 Heavy oil reservoirs on Alaska North Slope (ANS) are unconsolidated and contain abundant clay minerals, where the first-ever field pilot is currently implemented to validate the use of polymer floods for heavy oil enhanced oil recovery (EOR)....

Full description

Bibliographic Details
Main Author: Chang, Hongli
Other Authors: Zhang, Yin, Dandekar, Abhijit, Trainor, Tom, Guerard, Jennifer
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/11122/13007
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 2022 Heavy oil reservoirs on Alaska North Slope (ANS) are unconsolidated and contain abundant clay minerals, where the first-ever field pilot is currently implemented to validate the use of polymer floods for heavy oil enhanced oil recovery (EOR). The polymer molecules and/or fine clay particles carried with the produced liquid could potentially affect the oil/water separation, which is one of the major concerns for field operators. This dissertation aims to investigate the emulsification behavior of produced liquid, understand the emulsifying mechanism, and seek an adaptive and cost-effective method to treat the produced liquid from polymer flooding. Emulsions were prepared by mechanically mixing the actual heavy oil and the produced water from the pilot site, of which the stability was investigated by bottle test method or multiple light scattering method. Drop size distribution and interfacial properties were measured via microscope and pendant drop technique to probe the stability mechanism further. Results showed that oil-continuous or water-continuous emulsion could be generated depending on the water cut, clay types, clay concentration, and polymer concentration. In the crude oil/water system, the increasing water cut triggered the phase inversion of oil-continuous emulsion to water-continuous emulsion, resulting in faster separation and lower emulsion stability. Whereas, clay particles, no matter added to the oil or water phase, resulted in an unfavorable phase inversion from the loose watercontinuous emulsion to the tight oil-continuous emulsion as clay concentration increased. For all four types of clay except Ca-montmorillonite, clay particles added to water led to an earlier phase inversion and higher emulsion stability than that added to the oil. The dual function of polymer on emulsion stability was observed. On the one hand, both sheared and unsheared polymer tended to convert the oil-continuous emulsion formed in either crude oil/water system ...