Neuroendocrine and glial cell remodeling in a hibernating mammal

Thesis (M.S.) University of Alaska Fairbanks, 2021 In most seasonally breeding vertebrates, changes in photoperiod trigger the remodeling of neuroendocrine and glial cells known to be involved in activation of the reproductive axis. We used electron microscopy to determine whether similar remodeling...

Full description

Bibliographic Details
Main Author: Duncan, Cassandra
Other Authors: Williams, Cory, O'Brien, Kristin, Christian, Helen
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/11122/12609
Description
Summary:Thesis (M.S.) University of Alaska Fairbanks, 2021 In most seasonally breeding vertebrates, changes in photoperiod trigger the remodeling of neuroendocrine and glial cells known to be involved in activation of the reproductive axis. We used electron microscopy to determine whether similar remodeling occurs under conditions of continuous darkness during hibernation in arctic ground squirrels (Urocitellus parryii). Immediately prior to the reproductive season, arctic ground squirrels naturally sequester themselves in a persistently dark hibernacula for 6-8 months where they experience only muted fluctuations in ambient temperature. Hibernation consists of two to three week-long bouts of torpor, during which body temperature and metabolism are depressed, periodically interrupted by short (<24h) interbout arousals where animals become euthermic and metabolism returns to "normal" levels. Although their exact functions are unknown, interbout arousals are generally thought to be associated with homeostatic processes. With the exception of brief dynamic changes during interbout arousals, brain activity and neuroendocrine pathways are generally thought to be relatively static across hibernation. We hypothesized that interbout arousals may allow for cellular ultrastructural remodeling of pars tuberalis thyrotroph cells, hypothalamic tanycytes, and pars distalis gonadotroph cells across hibernation, allowing for animals to activate their reproductive axis in anticipation of the active season. To test this, we sampled brains from arctic ground squirrels during early, mid-, and late hibernation, as well as post hibernation. We found evidence for cellular remodeling and activation of the reproductive axis across hibernation including decreases in neuronal contacts with the hypothalamic basal lamina, increases in the cell area and decreases in granule density of pars distalis gonadotrophs, increases in gonadal mass, and upregulation of steroidogenic genes in gonadal tissue. We hypothesize that the return to euthermy ...