Using line acceleration to measure false killer whale (Pseudorca crassidens) click and whistle source levels during pelagic longline depredation

False killer whales (Pseudorca crassidens) depredate pelagic longlines in offshore Hawaiian waters. On January 28, 2015 a depredation event was recorded 14m from an integrated GoPro camera, hydrophone, and accelerometer, revealing that false killer whales depredate bait and generate clicks and whist...

Full description

Bibliographic Details
Published in:The Journal of the Acoustical Society of America
Main Authors: Wild, Lauren, Straley, Janice M., Barnes, Dustin, Bayless, Ali, O'Connell, Victoria, Oleson, Erin, Sarkar, Jit, Behnken, Linda, Falvey, Dan, Martin, Sean, Thode, Aaron
Format: Article in Journal/Newspaper
Language:English
Published: Acoustical Society of America 2016
Subjects:
Online Access:http://hdl.handle.net/11122/11922
Description
Summary:False killer whales (Pseudorca crassidens) depredate pelagic longlines in offshore Hawaiian waters. On January 28, 2015 a depredation event was recorded 14m from an integrated GoPro camera, hydrophone, and accelerometer, revealing that false killer whales depredate bait and generate clicks and whistles under good visibility conditions. The act of plucking bait off a hook generated a distinctive 15 Hz line vibration. Two similar line vibrations detected at earlier times permitted the animal’s range and thus signal source levels to be estimated over a 25-min window. Peak power spectral density source levels for whistles (4–8 kHz) were estimated to be between 115 and 130 dB re 1 lPa2/Hz @ 1 m. Echolocation click source levels over 17–32 kHz bandwidth reached 205 dB re 1lPa @ 1 m pk-pk, or 190 dB re 1lPa @ 1 m (root-meansquare). Predicted detection ranges of the most intense whistles are 10 to 25 km at respective sea states of 4 and 1, with click detection ranges being 5 times smaller than whistles. These detection range analyses provide insight into how passive acoustic monitoring might be used to both quantify and avoid depredation encounters. The authors are indebted to Captain Jerry Ray and the rest of the F/V Katy Mary crew for permitting the camera gear to be deployed during their longline fishing trip. Robert Glatts designed the custom GoPro circuit board, and Will Cerf assisted with video footage analysis. This research was sponsored by Derek Orner under the Bycatch Reduction Engineering Program (BREP) at the National Oceanic and Atmospheric Administration (NOAA). Yes