The response of juvenile coho and chinook salmon stocks to salmon spawner abundance: marine nutrients as drivers of productivity

Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 Resource subsidies from spawning Pacific salmon (Oncorhynchus spp.) in the form of marine-derived nutrients (MDN) benefit juvenile salmonids while they rear in fresh water, but it remains unclear if the abundance of spawners in a watershed af...

Full description

Bibliographic Details
Main Author: Joy, Philip J.
Other Authors: Wipfli, Mark S., Adkison, Milo D., McPhee, Megan V., Stricker, Craig A., Rinella, Danial J.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/11122/10623
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 Resource subsidies from spawning Pacific salmon (Oncorhynchus spp.) in the form of marine-derived nutrients (MDN) benefit juvenile salmonids while they rear in fresh water, but it remains unclear if the abundance of spawners in a watershed affects the productivity of salmon stocks that rear in those riverine systems. This dissertation aimed to provide a better understanding of these dynamics by evaluating whether the response of juvenile salmon to MDN is sufficient to enhance overall stock productivity. In Chapter 1, I examined correlative relationships in the abundance of Pink (O. gorbuscha) and Coho (O. kisutch) salmon and simulated spawner-recruit dynamics to determine if those correlations were produced by a Coho Salmon response to marine subsidies from Pink Salmon, a shared response to marine conditions, and/or autocorrelations in the returns of both species. Results demonstrated that observed correlative patterns most closely resembled simulated freshwater effects, providing evidence that marine subsidies from Pink Salmon influence Coho Salmon productivity. In Chapter 2, I examined the relationship between spawner abundance and MDN assimilation by juvenile Coho and Chinook (O. tshawytscha) salmon in the Unalakleet River watershed. Stable isotope analysis demonstrated that after salmon spawned, MDN assimilation by juvenile salmon in the fall was a function of adult Pink and Chinook salmon spawner abundance, regardless of the habitat occupied by rearing juveniles. However, by the following summer, high retention of MDN in complex habitat masked seasonality of MDN assimilation in sloughs and river sections with abundant lentic-lotic exchanges. As such, MDN assimilation in the summer (prior to arrival of spawners) bore only a faint relationship to spawner abundance and distribution from the previous year. In chapter 3 I examined the relationship between MDN assimilation (Chapter 2) and juvenile salmon growth, size, body condition, and abundance. Prior ...