Crop modeling to assess the impact of climate change on spring wheat growth in sub-Arctic Alaska

Thesis (M.S.) University of Alaska Fairbanks, 2019 In the sub-arctic region of Interior Alaska, warmer temperatures and a longer growing season caused by climate change could make spring wheat (Triticum aestivum L.) a more viable crop. In this study, a crop model was utilized to simulate the growth...

Full description

Bibliographic Details
Main Author: Harvey, Stephen K.
Other Authors: Zhang, Mingchu, Karlsson, Meriam, Fochesatto, Gilberto
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/11122/10503
Description
Summary:Thesis (M.S.) University of Alaska Fairbanks, 2019 In the sub-arctic region of Interior Alaska, warmer temperatures and a longer growing season caused by climate change could make spring wheat (Triticum aestivum L.) a more viable crop. In this study, a crop model was utilized to simulate the growth of spring wheat in future climate change scenarios RCP4.5 (medium-low emission) and RCP8.5 (high emission) of Fairbanks, Alaska. In order to fulfill such simulation, in 2018 high quality crop growth datasets were collected at the Fairbanks and Matanuska Valley Experiment Farms and along with historic variety trial data, the crop model was calibrated and validated for simulating days to maturity (emergence to physiological maturity) and yield of spring wheat in Fairbanks. In the Fairbanks 1989-2018 (baseline) climate, growing season (planting to physiological maturity) average temperature and total precipitation are 15.6° C and 122 mm, respectively. In RCP4.5 2020-2049 (2035s), 2050-2079 (2065s), and 2080-2099 (2090s) projected growing season average temperature and total precipitation are 16.7° C, 17.4° C, 17.8° C and 120 mm, 112 mm, 112 mm, respectively. In RCP8.5 2035s, 2065s, and 2090s projected growing season average temperature and total precipitation are 16.8° C, 18.5° C, 19.5° C and 120 mm, 113 mm, 117 mm, respectively. Using Ingal, an Alaskan spring wheat, the model simulated days to maturity and yield in baseline and projected climate scenarios of Fairbanks, Alaska. Baseline days to maturity were 69 and yield was 1991 kg ha-1. In RCP4.5 2035s, 2065s, and 2090s days to maturity decreased to 64, 62, 60 days, respectively, and yield decreased 2%, 6%, 8%, respectively. In RCP8.5 2035s, 2065s, and 2090s days to maturity decreased to 64, 58, 55 days, respectively, and yield decreased 1%, 3%, then increased 1%, respectively. Adaptation by cultivar modification to have a growing degree day requirement of 68 days to maturity in RCP4.5 2035s and RCP8.5 2035s resulted in increased yields of 4% and 5%, respectively. ...