Hydrological, Sedimentological, and Meteorological Observations and Analysis on the Sagavanirktok River

The Dalton Highway near Deadhorse was closed twice during late March and early April 2015 because of extensive overflow from the Sagavanirktok River that flowed over the highway. That spring, researchers from the Water and Environmental Research Center at the University of Alaska Fairbanks (UAF) mon...

Full description

Bibliographic Details
Main Authors: Toniolo, H., Youcha, E.K., Tape, K.D., Paturi, R., Homan, J., Bondurant, A., Ladines, I., Laurio, J., Vas, D., Keech, J., Tschetter, T., LaMesjerant, E.
Format: Report
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/11122/10393
Description
Summary:The Dalton Highway near Deadhorse was closed twice during late March and early April 2015 because of extensive overflow from the Sagavanirktok River that flowed over the highway. That spring, researchers from the Water and Environmental Research Center at the University of Alaska Fairbanks (UAF) monitored the river conditions during breakup, which was characterized by unprecedented flooding that overtopped and consequently destroyed several sections of the Dalton Highway near Deadhorse. The UAF research team has monitored breakup conditions at the Sagavanirktok River since that time. Given the magnitude of the 2015 flooding, the Alyeska Pipeline Service Company started a long-term monitoring program within the river basin. In addition, the Alaska Department of Transportation and Public Facilities (ADOT&PF) funded a multiyear project related to sediment transport conditions along the Sagavanirktok River. The general objectives of these projects include determining ice elevations, identifying possible water sources, establishing surface hydro-meteorological conditions prior to breakup, measuring hydro-sedimentological conditions during breakup and summer, and reviewing historical imagery of the aufeis extent. In the present report, we focus on new data and analyze it in the context of previous data. We calculated and compared ice thickness near Franklin Bluffs for 2015, 2016, and 2017, and found that, in general, ice thickness during both 2015 and 2016 was greater than in 2017 across most of the study area. Results from a stable isotope analysis indicate that winter overflow, which forms the aufeis in the river area near Franklin Bluffs, has similar isotopic characteristics to water flowing from mountain springs. End-of-winter snow surveys (in 2016/2017) within the watershed indicate that the average snow water equivalent was similar to what we observed in winter 2015/2016. Air temperatures in May 2017 were low on the Alaska North Slope, which caused a long and gradual breakup, with peak flows occurring in ...