Climate change negates positive CO₂ effects on marine species biomass and productivity by altering the strength and direction of trophic interactions

One of the biggest challenges in more accurately forecasting the effects of climate change on future food web dynamics relates to how climate change affects multi-trophic species interactions, particularly when multiple interacting stressors are considered. Using a dynamic food web model, we investi...

Full description

Bibliographic Details
Published in:Science of The Total Environment
Main Authors: Ullah, M.H., Fordham, D.A., Nagelkerken, I.
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2021
Subjects:
Online Access:https://hdl.handle.net/2440/132951
https://doi.org/10.1016/j.scitotenv.2021.149624
Description
Summary:One of the biggest challenges in more accurately forecasting the effects of climate change on future food web dynamics relates to how climate change affects multi-trophic species interactions, particularly when multiple interacting stressors are considered. Using a dynamic food web model, we investigate the individual and combined effect of ocean warming and acidification on changes in trophic interaction strengths (both direct and indirect) and the consequent effects on biomass structure of food web functional groups. To do this, we mimicked a species-rich multi-trophic-level temperate shallow-water rocky reef food web and integrated empirical data from mesocosm experiments on altered species interactions under warming and acidification, into food-web models. We show that a low number of strong temperature-driven changes in direct trophic interactions (feeding and competition) will largely determine the magnitude of biomass change (either increase or decrease) of high-order consumers, with increasing consumer biomass suppressing that of prey species. Ocean acidification, in contrast, alters a large number of weak indirect interactions (e.g. cascading effects of increased or decreased abundances of other groups), enabling a large increase in consumer and prey biomass. The positive effects of ocean acidification are driven by boosted primary productivity, with energy flowing up to higher trophic levels. We show that warming is a much stronger driver of positive as well as negative modifications of species biomass compared to ocean acidification. Warming affects a much smaller number of existing trophic interactions, though, with direct consumer-resource effects being more important than indirect effects. We conclude that the functional role of consumers in future food webs will be largely regulated by alterations in the strength of direct trophic interactions under ocean warming, with ensuing effects on the biomass structure of marine food webs. Hadayet Ullah, Damien A.Fordham, Ivan Nagelkerken