The petrology and timing of the Anabama Granite and associated igneous activity, Olary Region, SA

This item is only available electronically. Two ideologies of thought exist when models of granite genesis are considered. Do they represent the products of direct fractionation of a basaltic mantle melt, or, do they form in accordance with the restite model of White and Chappell (1977)? Assimilatio...

Full description

Bibliographic Details
Main Author: McDonald, G. D.
Other Authors: School of Physical Sciences
Format: Thesis
Language:English
Published: 1992
Subjects:
Online Access:http://hdl.handle.net/2440/122489
Description
Summary:This item is only available electronically. Two ideologies of thought exist when models of granite genesis are considered. Do they represent the products of direct fractionation of a basaltic mantle melt, or, do they form in accordance with the restite model of White and Chappell (1977)? Assimilation and fractional crystallization (AFC) modelling of Nd - and Sr - isotopic data from the Anabama Granite, of this study, and data from the granites of the southern Adelaide Fold Belt, Antarctica and the Lachlan Fold Belt of New South Wales, all of approximately the same age, appears to reflect mixed sources with components derived both from an average Delamerian basalt composition and an average Archean crust composition. Results indicate that the Anabama Granite mostly represents primitive Delamerian basalt, contaminated by 12- 14 % Archean crustal material. Field relationships of the Anabama Granite indicate that it was the site of multiple magmatic intrusions, between approximately 490- 425 Ma. These intrusions are represented by several episodes of hydrothermal alteration and crosscutting dykes. A long-lived thermal source, not represented in the southern Adelaide Fold Belt, may be responsible for this ongoing magmatic activity. Examples of these dykes are the lamprophyre dyke, dated at 457 ± 18 Ma, which is similar in composition and appearance to the lamprophyres near Truro (South Australia) and the dacite porphyry dyke which crosscuts all other lithologies and was dated at 425 ± 13Ma. This age corresponds to the onset of thermal activity in the Lachlan Fold Belt, and therefore, leads to the suggestion that the region where the Anabama Granite outcrops may represent the western margin of the thermal perturbation responsible for the production of granitic melts in the Lachlan Fold Belt at around 400 Ma. Differences in source regions for the Anabama Granite, the granites of Antarctica and those of the Lachlan Fold Belt are recognized by the different Nd- and Sr - isotopic ratios, although all granites may ...