The effects of the water flow through the Canadian Archipelago in a global ice-ocean model

Numerical experiments are conducted with a global ice-ocean model in order to evaluate the influence of the water flow from the Arctic Ocean to Baffin Bay through the Canadian Archipelago on the water-mass properties of the Arctic Ocean and adjacent seas and, more generally, on the global ocean circ...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Goosse, Hugues, Fichefet, Thierry, Campin, JM.
Other Authors: UCL - SC/PHYS - Département de physique, UCL - SST/ELI/ELIC - Earth & Climate
Format: Article in Journal/Newspaper
Language:English
Published: Amer Geophysical Union 1997
Subjects:
Online Access:http://hdl.handle.net/2078.1/46204
https://doi.org/10.1029/97GL01352
Description
Summary:Numerical experiments are conducted with a global ice-ocean model in order to evaluate the influence of the water flow from the Arctic Ocean to Baffin Bay through the Canadian Archipelago on the water-mass properties of the Arctic Ocean and adjacent seas and, more generally, on the global ocean circulation. The results indicate that this flow plays a significant role in controlling the freshwater budget of the Arctic Ocean. When the Canadian Archipelago passage is open in the model, the Arctic pycnocline experiences a noticeable increase in salinity. Furthermore, the flow of relatively fresh Arctic waters through the passage yields a pronounced decrease of surface salinity and density in the Labrador Sea, which leads to a diminution of convective activity there. As a result, the North Atlantic Deep Water outflow in the model is reduced by about 5%. Deep convection in the Norwegian Sea exhibits almost no change, and this despite a weakening of the inflow of relatively fresh Arctic waters through Fram Strait.