A Third of Organic Carbon Is Mineral Bound in Permafrost Sediments Exposed by the World's Largest Thaw Slump, Batagay, Siberia
Organic carbon (OC) in permafrost interacts with the mineral fraction of soil and sediments, representing < 1% to ~80% of the total OC pool. Quantifying the nature and controls of mineral–OC interactions is therefore crucial for realistic assessments of permafrost-carbon-climate feedbacks, es...
Published in: | Permafrost and Periglacial Processes |
---|---|
Main Authors: | , , , , , , , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
2024
|
Subjects: | |
Online Access: | http://hdl.handle.net/2078.1/289112 https://doi.org/10.1002/ppp.2230 |
Summary: | Organic carbon (OC) in permafrost interacts with the mineral fraction of soil and sediments, representing < 1% to ~80% of the total OC pool. Quantifying the nature and controls of mineral–OC interactions is therefore crucial for realistic assessments of permafrost-carbon-climate feedbacks, especially in ice-rich regions facing rapid thaw and the development of thermo-erosion landforms. Here, we analyzed sediment samples from the Batagay megaslump in East Siberia, and we present total element concentrations, mineralogy, and mineral–OC interactions in its different stratigraphic units. Our findings indicate that up to 34 ± 8% of the OC pool interacts with mineral surfaces or elements. Interglacial deposits exhibit enhanced OC–mineral interactions, where OC has undergone greater microbial transformation and has likely low degradability. We provide a first-order estimate of ~12,000 tons of OC mobilized annually downslope of the headwall (i.e., the approximate mass of 30 large aircrafts), with a maximum of 38% interacting with OC via complexation with metals or associations to poorly crystalline iron oxides. These data imply that over one-third of the OC exposed by the slump is not readily available for mineralization, potentially leading to prolonged OC residence time in soil and sediments under stable physicochemical conditions. |
---|