Combining geochemical and geophysical parameters to characterize permafrost degradation at Abisko, Sweden: implications for iron-organic carbon interactions

Between 30 and 80% of soil organic carbon (OC) in permafrost environments can be stabilized by interactions with mineral surfaces or metals such as iron. Iron-OC interactions may be modified by changing hydrological conditions upon permafrost thaw resulting in local subsidence. The challenge is to i...

Full description

Bibliographic Details
Main Authors: du Bois d'Aische, Eléonore, Thomas, Maxime, Jonard, François, Villani, Maëlle, Hirst, Catherine, Giesler, Reiner, Mörth, Carl-Magnus, Opfergelt, Sophie, Arctic Science Summit Week
Other Authors: UCL - SST/ELI/ELIE - Environmental Sciences
Format: Conference Object
Language:English
Published: 2023
Subjects:
Online Access:http://hdl.handle.net/2078.1/268744
Description
Summary:Between 30 and 80% of soil organic carbon (OC) in permafrost environments can be stabilized by interactions with mineral surfaces or metals such as iron. Iron-OC interactions may be modified by changing hydrological conditions upon permafrost thaw resulting in local subsidence. The challenge is to identify the early stage of thermokarst landforms, and to quantify the influence of thermokarst development on Fe and OC released in soil pore water upon thawing. We monitored the soil water content (SWC), soil temperature and soil electrical conductivity (EC) together with the chemical composition of the soil pore water along a gradient of thermokarst development and subsequent permafrost degradation at Abisko, Sweden (palsa-bog-fen). More specifically, we combined geophysical parameters (elevation, active layer depth, SWC and soil EC) and physico-chemical parameters (pH and soil pore water EC) at the profile and slope scales, with concentrations of Fe and dissolved organic carbon (DOC) in soil pore water at the profile scale. The results highlight that (i) at the profile scale, elevation, active layer depth and SWC are relevant geophysical criteria to discriminate between palsa, bog and fen; (ii) permafrost degradation leads to the mobilization of Fe and DOC in soil pore water; (iii) at the slope scale, landscape areas can be classified as palsa, intermediate or fen based on the three geophysical criteria and this can be used to derive the conditions for the mobility of Fe and DOC. These data support that physical degradation of permafrost and subsequent changes in SWC with thermokarst landform development from palsa to fen likely influences the geochemical conditions for the stability of Fe-OC interactions.