Diastereoselective and enantioselective alkaline-hydrolysis of 2-aryl-1-cyclohexyl acetate: a CAL-B catalyzed deacylation/acylation tandem process

Candida antarctica lipase proved to be a particularly efficient lipase for the resolution of racemic 2-arylcyclohexyl acetate in hydrolysis reaction with Na2CO3 in an organic medium. The (1R,2S)-trans-2-arylcyclohexanols 2a–2d were obtained with high ee values (up to >99%) and the selectivity r...

Full description

Bibliographic Details
Published in:Tetrahedron: Asymmetry
Main Authors: Belkacemi, Fatma Zohra, Merabet-Khelassi, Mounia, Aribi-Zouioueche, Louisa, Riant, Olivier
Other Authors: UCL - SST-IMCN-MOST
Format: Article in Journal/Newspaper
Language:English
Published: Pergamon 2017
Subjects:
Online Access:http://hdl.handle.net/2078.1/194284
https://doi.org/10.1016/j.tetasy.2017.09.010
Description
Summary:Candida antarctica lipase proved to be a particularly efficient lipase for the resolution of racemic 2-arylcyclohexyl acetate in hydrolysis reaction with Na2CO3 in an organic medium. The (1R,2S)-trans-2-arylcyclohexanols 2a–2d were obtained with high ee values (up to >99%) and the selectivity reached E > 200. The influence of the enol ester and the solvent on (±)-trans-2-arylcyclohexanol in the CAL-B catalyzed acylation was also studied and compared with the deacylation. The CAL-B exhibits a better affinity for the alkaline hydrolysis reaction compared with acylation with the enol esters in the same organic solvents. The best conditions were applied to resolve a stereoisomeric mixture cis/trans-2-phenyl-1-cyclohexanol and its corresponding acetate by acylation and deacylation. The obtained results show a highly enantio- and diastereoselectivity of the CAL-B during the acylation and the deacylation in favor of the trans-(R)-enantiomer product. The resolution of a mixture of cis/trans-2-arylcyclohexanols was an easy, convenient approach to provide only one stereoisomer of a mixture of four with high enantiomeric excess.