Intense Southwest Florida Hurricane Landfalls over the Past 1000 Years

Recent research has proposed that human-induced sea surface temperature (SST) warming has led to an increase in the intensity of hurricanes over the past 30 years. However, this notion has been challenged on the basis that the instrumental record is too short and unreliable to reveal long-term trend...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Ercolani, Christian, Muller, Joanne, Collins, Jennifer, Savarese, Michael, Squiccimara, Louis
Format: Article in Journal/Newspaper
Language:unknown
Published: Digital Commons @ University of South Florida 2015
Subjects:
Online Access:https://digitalcommons.usf.edu/geo_facpub/1396
https://doi.org/10.1016/j.quascirev.2015.08.008
Description
Summary:Recent research has proposed that human-induced sea surface temperature (SST) warming has led to an increase in the intensity of hurricanes over the past 30 years. However, this notion has been challenged on the basis that the instrumental record is too short and unreliable to reveal long-term trends in hurricane activity. This study addresses this limitation by investigating hurricane-induced overwash deposits (paleotempestites) behind a barrier island in Naples, FL, USA. Paleotempestologic proxies including grain size, percent calcium carbonate, and fossil shells species were used to distinguish overwash events in two sediment cores spanning the last one thousand years. Two prominent paleotempestites were observed in the top 20 cm of both cores: the first identified as Hurricane Donna in 1960 whereas an older paleotempestite (1900–1930) could represent one of three documented storms in the early 1900s. An active period of hurricane overwash from 1000 to 500 yrs. BP and an inactive period from 500 to 150 yrs. BP correlate with reconstructed SSTs from the Main Development Region (MDR) of the North Atlantic Ocean. We observe an increased number of paleotempestites when MDR SSTs are warmer, coinciding with the Medieval Warm Period, and very few paleotempestites when MDR SSTs are cooler, coinciding with the Little Ice Age. Results from this initial Southwest Florida study indicate that MDR SSTs have been a key long-term climate driver of intense Southwest Florida hurricane strikes.