Vertical structure of buoyancy transport by ocean baroclinic turbulence

International audience Ocean mesoscale eddies enhance meridional buoyancy transport, notably in the Antarctic Circumpolar Current where they contribute to setting the deep stratification of the neighboring ocean basins. The much-needed parameterization of this buoyancy transport in global climate mo...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Meunier, Julie, Miquel, Benjamin, Gallet, Basile
Other Authors: Service de physique de l'état condensé (SPEC - UMR3680), Institut Rayonnement Matière de Saclay (DRF) (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Project: 757239,FLAVE
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04301208
https://hal.science/hal-04301208/document
https://hal.science/hal-04301208/file/GRLMeunier23.pdf
https://doi.org/10.1029/2023GL103948
Description
Summary:International audience Ocean mesoscale eddies enhance meridional buoyancy transport, notably in the Antarctic Circumpolar Current where they contribute to setting the deep stratification of the neighboring ocean basins. The much-needed parameterization of this buoyancy transport in global climate models requires a theory for the overall flux, but also for its vertical structure inside the fluid column. Based on the quasi-geostrophic dynamics of an idealized patch of ocean hosting an arbitrary vertically sheared zonal flow, we provide a quantitative prediction for the vertical structure of the buoyancy flux without adjustable parameters. The prediction agrees quantitatively with meridional flux profiles obtained through numerical simulations of an idealized patch of ocean with realistic parameter values. This work empowers modelers with an explicit and physically based expression for the vertical profile of buoyancy transport by ocean baroclinic turbulence, as opposed to the common practice of using arbitrary prescriptions for the depth-dependence of the transport coefficients.