Geology and Hydrogeology of Faults on Cape Breton Island, Nova Scotia, Canada: an overview

Cape Breton Island provides a hydrogeological view into the roots of an ancient mountain range, now exhumed, glaciated, and tectonically inactive. It exhibits deep crustal faults and magma chambers associated with formation of the Appalachian mountain belt and the Maritimes Basin during the Paleozoi...

Full description

Bibliographic Details
Published in:Atlantic Geology
Main Author: Baechler, Fred
Format: Article in Journal/Newspaper
Language:English
Published: Atlantic Geoscience Society 2015
Subjects:
Online Access:https://journals.lib.unb.ca/index.php/ag/article/view/22316
Description
Summary:Cape Breton Island provides a hydrogeological view into the roots of an ancient mountain range, now exhumed, glaciated, and tectonically inactive. It exhibits deep crustal faults and magma chambers associated with formation of the Appalachian mountain belt and the Maritimes Basin during the Paleozoic, as well as Mesozoic rifting relating to the opening of the Atlantic Ocean. Cenozoic exhumation brought these features near surface and into the active groundwater flow field where they were impacted by glaciation and fluctuating sea level. The faults have been important from a societal viewpoint in development of municipal groundwater supplies, controlling inflows to excavations, hydrocarbon exploration, quarry development, and geotechnical investigations. Conceptual models presented here outline fault control on groundwater flow based on seven case studies. Future research should focus on basin-bounding faults in support of managing their role in aquifer development and protection, mountain-front recharge, controlling large-magnitude springs, groundwater–stream interaction, and channel morphology. The hydrogeological importance of these faults has historically been underappreciated.