Geochemistry of mineral dust in the McMurdo Dry Valleys Region, Antarctica

The transport and deposition of windblown materials are major processes in the ice-free areas of polar regions. The deposition of aeolian material provides connectivity within the ecosystems of these regions and is integral in understanding geochemical balances and exchanges between landscape units....

Full description

Bibliographic Details
Main Authors: Deuerling, Kelly M., Baxter, Ethan, Inglis, Jeremy, Lyons, William Berry
Format: Text
Language:unknown
Published: DigitalCommons@UNO 2014
Subjects:
Online Access:https://digitalcommons.unomaha.edu/geoggeolfacproc/3
https://digitalcommons.unomaha.edu/context/geoggeolfacproc/article/1002/viewcontent/geochemistry_of_mineral_dust_in_th_McMurdo_Dry_Valleys_region.pdf
Description
Summary:The transport and deposition of windblown materials are major processes in the ice-free areas of polar regions. The deposition of aeolian material provides connectivity within the ecosystems of these regions and is integral in understanding geochemical balances and exchanges between landscape units. We have analyzed materials deposited on glacier and permanent lake-ice surfaces as well as geomorphological features formed by aeolian processes in the largest ice-free area in Antarctica, the McMurdo Dry Valleys (~78 °S) in order to determine the source of this sediment. This presentation will focus on the materials collected from the glacier and lake surfaces. The bulk of sediment movement occurs during foehn events in the austral winter that redistribute material throughout the region. The majority of these samples were sand size (>80 %) by weight. Samples containing the highest silt size were from the glaciers in the eastern portion of the Taylor Valley which is the most downwind position. Major rock-forming elements were analyzed using Standard XRF techniques. The alkali metals were depleted with respect to the Upper Continental Crust (UCC), in both the sand and silt fractions, while the alkaline earths were enriched. The TiO2, Fe2O3 and Al2O3 in the sands are similar to UCC values. The major element geochemistry of the aeolian material suggests that it is a mix of the four major rock types in the Valley itself: PreCambrian basement complex, Beacon Sandstone, Ferrar Dolerite and McMurdo Volcanics. Sr isotopic measurements of the fine grained materials from the glacier surfaces indicate the material is similar to the soils from their respective glacier/lake basins. Nd isotope values of this material lie intermediate to the rock values, indicating multiple sources of the aeolian material. The Sr and Nd isotopic data do not plot within the fields of dust from either Vostok or Dome C ice cores which has been interpreted as coming primarily from South America. All of our data suggest a local source of the majority ...