Towards Electronic SMS Dictionary Construction: An Alignment-based Approach

International audience In this paper, we propose a method for aligning text messages (entitled AlignSMS) in order to automatically build an SMS dictionary. An extract of 100 text messages from the 88milSMS corpus (Panckhurst el al., 2013, 2014) was used as an initial test. More than 90,000 authentic...

Full description

Bibliographic Details
Main Authors: Lopez, Cédric, Bestandji, Reda, Roche, Mathieu, Panckhurst, Rachel
Other Authors: VISEO, Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), ADVanced Analytics for data SciencE (ADVANSE), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Praxiling (Praxiling), Université Paul-Valéry - Montpellier 3 (UPVM)-Centre National de la Recherche Scientifique (CNRS)
Format: Conference Object
Language:English
Published: HAL CCSD 2014
Subjects:
SMS
Online Access:https://hal-lirmm.ccsd.cnrs.fr/lirmm-01054899
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01054899/document
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01054899/file/753_Paper.pdf
Description
Summary:International audience In this paper, we propose a method for aligning text messages (entitled AlignSMS) in order to automatically build an SMS dictionary. An extract of 100 text messages from the 88milSMS corpus (Panckhurst el al., 2013, 2014) was used as an initial test. More than 90,000 authentic text messages in French were collected from the general public by a group of academics in the south of France in the context of the sud4science project (http://www.sud4science.org). This project is itself part of a vast international SMS data collection project, entitled sms4science (http://www.sms4science.org, Fairon et al. 2006, Cougnon, 2014). After corpus collation, pre-processing and anonymisation (Accorsi et al., 2012, Patel et al., 2013), we discuss how "raw" anonymised text messages can be transcoded into normalised text messages, using a statistical alignment method. The future objective is to set up a hybrid (symbolic/statistic) approach based on both grammar rules and our statistical AlignSMS method.