KOMPENZACIJA HISTEREZE ANIZOTROPNEGA MAGNETOUPOROVNEGA SENZORJA ZA MERJENJE POMIKA ALI ZASUKA S POMOČJO MODELA ZAOSTAJAJOČIH DOMEN

Pri avtomatizaciji pozicionirnih sistemov ključno vlogo igrajo dajalniki položaja, to so naprave, ki merijo linearni pomik oziroma kotni zasuk premičnih delov. Zahteve za točnost, robustnost in ponovljivost se z napredkom tehnologije stalno zaostrujejo. Pogosta rešitev je uporaba dajalnikov z vgraje...

Full description

Bibliographic Details
Main Author: DOMAJNKO, DORA
Other Authors: Križaj, Dejan
Format: Doctoral or Postdoctoral Thesis
Language:Slovenian
Published: 2020
Subjects:
Online Access:https://repozitorij.uni-lj.si/IzpisGradiva.php?id=117168
https://repozitorij.uni-lj.si/Dokument.php?id=130973&dn=
Description
Summary:Pri avtomatizaciji pozicionirnih sistemov ključno vlogo igrajo dajalniki položaja, to so naprave, ki merijo linearni pomik oziroma kotni zasuk premičnih delov. Zahteve za točnost, robustnost in ponovljivost se z napredkom tehnologije stalno zaostrujejo. Pogosta rešitev je uporaba dajalnikov z vgrajenimi tipali na anizotropni magnetouporovni princip, ki se odlično obnesejo v zahtevnem industrijskem okolju. Pri slednjih eno pomembnejših omejitev predstavlja magnetna histereza. Namen pričujočega dela je analiza pojava histereze in njenih posledic na meritev, izdelava matematičnega modela za simulacijo histerezne napake na nivoju dajalnika, nazadnje pa še integracija modela v obliki algoritma, ki omogoča kompenzacijo merilne napake v realnem času. Sledi izpeljava kalibracije modelskih parametrov in eksperimentalna verifikacija predlaganega kompenzacijskega postopka.Doktorska disertacija obravnava pojav histereze na izbranem tipu tipala na anizotropni magnetouporovni princip (AMR) za merjenje linearnega pomika vzdolž izmenično namagnetenega traku. Pojasnjeno je delovanje tovrstnega tipala ter uporaba proizvedenih signalov na višjem nivoju, nivoju dajalnika. AMR pojav je razložen s pomočjo spinsko-orbitalne sklopitve valenčnih elektronov v niklju in železu, ki sestavljata senzorski material permaloj. Slednji najpogosteje nastopa v obliki tankega filma, nanešenega na silicijevo rezino s fotolitografskimi postopki, kar nam omogoča, da njegove magnetne lastnosti aproksimiramo z dogajanjem v eni sami magnetni domeni. V doktorskem delu smo uporabili Stoner-Wohlfarthov model, ki opisuje odvisnost usmerjenosti magnetizacije magnetne domene od zunanje magnetne poljske jakosti in anizotropije – izraženosti lahke osi magnetizacije, ter z njim opisali posamezne odseke tipala. Model smo nato razširili na celotno tipalo ter izvedli simulacijo celostnega odziva sestava območij, ki so glede na prostorsko razporeditev izpostavljena različnemu zunanjemu polju. S tem smo pokazali, da lahko histerezni odziv AMR tipala razložimo s pomočjo energijskega ravnovesja posameznih magnetnih domen. V nadaljevanju je predstavljeno širše področje matematičnega modeliranja histereze. Ugotovitve nam skupaj z razumevanjem fizikalnega dogajanja v materialu pomagajo pri konstrukciji lastnega modela na podlagi operatorja »domena« iz družine operatorjev play Vpliv histereze računamo s pomočjo utežene vsote stanj posameznih domen in z ustreznimi prilagoditvami za dane vhodne parametre in periodičnost računane veličine – kota znotraj magnetnega pola. Model je preizkušen s kvalitativno primerjavo z meritvami pri izbranih parametrih. Predlagan je postopek za meritev, s pomočjo katere pridobimo histerezne parametre danega tipala ob danih okoliščinah meritve (tipalni razdalji, temperaturi, jakosti magnetnega aktuatorja…). Izpeljana je matematična pretvorba teh parametrov v vhodne parametre modela. S tem je mogoče model zaostajajočih domen (MZD) na stabilen in robusten način umeriti za izbrani sistem. Za namen kvantitativne analize uspešnosti modela in kasneje kompenzacijskega algoritma je razvita kriterijska funkcija za izračun ustreznega kazalnika NMH (napaka meritve dajalnika zaradi histereze). Model MZD smo implementirali v programsko opremo dajalnika in ga uporabili za kompenzacijo histereze. Algoritem smo preizkusili na skupini testnih vzorcev raznovrstnih magnetouporovnih tipal. Ugotovljeno je bilo do 90% zmanjšanje napake zaradi histereze ob ustrezni uporabi kompenzacijskega postopka. Pri tem se delovni cikel dajalnika ni bistveno podaljšal. S tem smo potrdili uporabnost predlaganega algoritma za kompenzacijo histereze s pomočjo modela zaostajajočih domen, ki smo ga širši javnosti predstavili v [1]. The key element of an automatized positioning system is an encoder a device which measures the linear movement or angular rotation of the moving parts. The demands for accuracy, repeatability and robustness increase rapidly as the technology is progressing. Encoders with embedded anisotropic magnetoresistive sensors are a well-established solution for harsh industrial environments. However, magnetic hysteresis remains one of their main drawbacks. The purpose of this work is to analyze the hysteresis phenomena and its effects on the measurement, the construction of a mathematical model for simulations of the error due to hysteresis on the encoder level, and the integration of presented model in an algorithm for real-time compensation of the measurement error. Then we propose a calibration routine for model parameters and experimentally verify the overall algorithm. The hysteresis phenomenon is observed on a chosen type of an anisotropic magnetoresistive sensor (AMR) for linear measurement of a displacement along an interchangeably magnetized scale. The measuring principle is explained, firstly on a sensor level and secondly how the produced signals are used on the higher level, level of the encoder. AMR effect is explained through the spin-orbit interaction of the valence electrons in nickel and iron, main two ingredients in sensing material permalloy. The latter is usually deposited on a silicon wafer thorough photolithographic technique. Its thin-film structure allows us to approximate its magnetic properties with a single magnetic domain. The Stoner-Wohlfarth model was used to describe the orientation of magnetization of the material in dependence of external magnetic field strength and the anisotropy along the easy axis of the domain. After modeling a small piece of permalloy, the model was extended to a whole sensor area where parts of the material are exposed to different external fields according to their spatial position. Thus, we have shown that hysteresis behavior of AMR can be explained through the energy equilibrium of each magnetic domain. Furthermore, we present the field of mathematical hysteresis modeling. Along with the physical understanding of the phenomena we were able to construct a new model, based on »domain« operator from the family of mathematical operators play. Hysteresis effect is calculated as a weighted sum of states of domains. Some adaptations must be introduced due to the periodic nature of the input and output quantity as we are measuring the position within a magnetic period. The results of the simulation were qualitatively compared to the measurements. The model was thus verified for the chosen set of parameters. We have proposed a routine, through which one is able to measure the parameters of the hysteresis of a sensor under given circumstances (ride height, temperature, the strength of the actuator…). The measured parameters are then transformed into input parameters for the model. Thus, one can adjust the lagging domain model (MZD) to their system in a stable and robust way. In order to quantitatively describe the effectiveness of the model and later the compensating algorithm, a criterion function was proposed which calculates the value of an indicator NMH (ang. HME, the error of encoder due to hysteresis). The MZD model was finally implemented into firmware of an encoder and used for hysteresis error compensation. The algorithm was tested on a group of magnetoresistive sensor samples of various types. The error due to hysteresis has decreased for up to 90% when the compensation was properly applied. The duty-cycle of the encoder was not significantly prolonged. Thus, we have proven the usability of the proposed algorithm for compensation of the hysteresis error, based on the lagging-domain model. The algorithm was presented to the scientific community in [1].