The impact of phytoplankton on spectral water transparency in the Southern Ocean:Implications for primary productivity

Spectral water transparency in the Northern Weddell Sea was studied during Austral spring. The depth of the 1-% surface irradiance level (''euphotic depth'') varied between 35 and 109 m and was strongly influenced by phytoplankton biomass. Secchi depths were non-linearly related...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: Tilzer, M. M., Gieskes, W. W., Heusel, R., Fenton, N.
Format: Article in Journal/Newspaper
Language:English
Published: 1994
Subjects:
Online Access:http://hdl.handle.net/11370/3a714d91-884d-44f6-bdf2-aabc8d55425d
https://research.rug.nl/en/publications/the-impact-of-phytoplankton-on-spectral-water-transparency-in-the-southern-ocean(3a714d91-884d-44f6-bdf2-aabc8d55425d).html
https://doi.org/10.1007/BF00234975
Description
Summary:Spectral water transparency in the Northern Weddell Sea was studied during Austral spring. The depth of the 1-% surface irradiance level (''euphotic depth'') varied between 35 and 109 m and was strongly influenced by phytoplankton biomass. Secchi depths were non-linearly related to euphotic depth. In phytoplankton-poor water, the most penetrating spectral region was restricted to a relatively narrow waveband in the blue (approximately 488 nm), but the range was broader, between 488 and 525 nm when phytoplankton were abundant. Water transparency in the red spectral range was always low and only to a small extent affected by phytoplankton. Two independent procedures were used to quantify the impact of phytoplankton on spectral water transparency: (1) Regression analysis of spectral in situ vertical light attenuation coefficients in the sea, against coincident chlorophyll concentrations. This method gave chlorophyll-specific light attenuation coefficients; the y-intercept could be interpreted as a measure of light attenuation by pure water plus non-algal material. (2) Spectra of in vivo light absorption derived by spectroscopy, using phytoplankton enriched to varying degrees onto filters. Thus chlorophyll-specific absorption cross-sections were determined. Estimates obtained by both procedures were in close agreement, By integrating over the spectrum of underwater irradiance, in situ chlorophyll-specific absorption cross sections of phytoplankton suspensions, related to all photosynthetically active radiation, were calculated. Light absorption by phytoplankton for photosynthesis is accomplished mainly in the blue spectral range. Also dissolved and particulate organic matter contributed to the attenuation of blue light. Because in water poor in phytoplankton, underwater irradiance was progressively restricted to blue light, chlorophyll-specific absorption cross-sections of phytoplankton, averaged over the spectrum of photosynthetically active irradiance, increased with water depth. In water with elevated phytoplankton biomass, overall light attenuation was generally enhanced. However, because the spectral composition of underwater light changed relatively little with depth, except immediately below the water surface, light absorption cross-sections of phytoplankton changed little below 10 m depth. Vertical differences in the proportions of underwater light absorbed by the phytoplankton community here were mainly dependent on biomass variations. Because of the comparatively small attenuation of blue light by non-algal matter, the efficiency of light harvesting by phytoplankton at any given concentration of chlorophyll in Antractic waters is greater than in other marine regions. At the highest phytoplankton biomass observed by us, as much as 70% of underwater light was available for phytoplankton photosynthesis. When phytoplankton were scarce, <10% of underwater light was harvested by phytoplankton.