Distributed parameter inversion of basal sliding and diffusion of the Antarctic ice sheet

Models describing natural phenomena can depend on parameters that cannot be directly measured, hence the necessity to develop inverse techniques to determine them. Our goal is to utilize such techniques to enable better initialization of ice sheet models for Antarctica. This will help such models to...

Full description

Bibliographic Details
Main Author: Mourad, Firas
Other Authors: GIPSA - Infinite Dimensional Dynamics (GIPSA-INFINITY), GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), Université Grenoble Alpes 2020-., Emmanuel Witrant, Alban Quadrat
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://theses.hal.science/tel-03047204
https://theses.hal.science/tel-03047204/document
https://theses.hal.science/tel-03047204/file/MOURAD_2020_diffusion.pdf
Description
Summary:Models describing natural phenomena can depend on parameters that cannot be directly measured, hence the necessity to develop inverse techniques to determine them. Our goal is to utilize such techniques to enable better initialization of ice sheet models for Antarctica. This will help such models to produce better forecasts as part of climate studies. The parameters of interest are the basal sliding coefficient, which characterizes the contact of the ice sheet with the bed underneath, and the diffusion coefficient which dictates the dynamics within the mass-continuity partial differential equation describing the movement of ice sheets. A Lyapunov based approach is proposed to control the convergence of the 1D and 2D inhomogeneous transport models toward a feasible equilibrium matching the measurements of surface topography of the Antarctic ice sheet. Our work offers a new 1D update law for the basal sliding coefficient inversion. We also use adaptive distributed parameter inversion to retrieve basal sliding from diffusion in 1D and 2D models. These two methods are tested on study cases and real data. Our results show that the methods proposed are successful in inverting for sliding and diffusion while replicating the available data. Les modèles décrivant certains phénomènes naturels peuvent dépendre de paramètres non mesurables, d'où la nécessité de les estimer par méthodes inverses. Notre objectif est d'utiliser de telles techniques pour permettre une meilleure initialisation des modèles de simulations des calottes glaciaires en Antarctique. Cela permettra l'obtention de meilleures prévisions dans le cadre des études climatiques. Nous nous intéressons au paramètre de glissement basale qui caractérise le contact de la calotte glaciaire avec le socle rocheux. De même qu'au paramètre de diffusion qui dicte la dynamique au sein de l'équation différentielle partielle de continuité de masse décrivant son mouvement. Une approche basée sur la théorie de Lyapunov est proposée pour contrôler la convergence des modèles ...