Study of a series of Antarctic micrometeorites : multi-analytic characterization and comparison with carbonaceous chondrites

The study of the Solar System's small bodies (asteroids and comets), formed 4.567 billions years ago, gives us an insight on the materials initially present in the solar nebula and on the mechanisms operating in the primitive Solar System. This study can be performed via the analysis of the so-...

Full description

Bibliographic Details
Main Author: Battandier, Manon
Other Authors: Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Université Grenoble Alpes, Pierre Beck, Lydie Bonal
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2018
Subjects:
Online Access:https://theses.hal.science/tel-01991841
https://theses.hal.science/tel-01991841/document
https://theses.hal.science/tel-01991841/file/BATTANDIER_2018_archivage.pdf
Description
Summary:The study of the Solar System's small bodies (asteroids and comets), formed 4.567 billions years ago, gives us an insight on the materials initially present in the solar nebula and on the mechanisms operating in the primitive Solar System. This study can be performed via the analysis of the so-called primitive cosmomaterials, as meteorites (mainly chondrites), interplanetary dust particles (IDPs) or even micrometeorites.This PhD thesis consists of a multi-analysis of a series of 58 Antarctic micrometeorites (AMMs) from the CONCORDIA 2006 and 2016 collections. This set of AMMs provides a large range of textural types reflecting different intensities of heating experienced during the entry in the atmosphere : 40 unmelted fine-grained particles (Fgs), 12 particles intermediate partially melted (Fg-Scs), 1 partially melted scoriaceous particle (Sc) and 5 completely melted cosmic spherules (CSs). To study these samples, I used different analytical methods : i) Raman spectroscopy, to study the structure of the polyaromatic organic matter; ii) infrared (IR) spectroscopy, to analyze the aliphatic organic matter as well as the hydration state and the mineralogy of these samples; and iii) nanoscale secondary ion mass spectroscopy (NanoSIMS) to measure the isotopic composition of carbon and nitrogen of the organic matter contained in the AMMs. In order to constrain the diversity of parent bodies sampled by cosmomaterials, I also studied type 1 and 2 CM, CR and CI carbonaceous chondrites.The combination of Raman and IR techniques reveals differences among AMMs in terms of abundance, structure and chemical composition of the organic matter, mineralogy and hydration state. In particular, 7 Fgs distinguishing themselves from others AMMs as they show : i) a hydrated mineralogy with phyllosilicates, ii) an abundance in polyaromatic and aliphatic organic matter and iii) structural differences in the polyaromatic organic matter. Heating laboratory experiments, on CM, CR and CI carbonaceous chondrite matrices show that the ...