Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas

International audience A series of 42 snow samples covering over a one-year period from the fall of 2004 to the summer of 2005 were collected from a 2.1-m snow pit at a high-altitude site on the northeastern slope of Mt. Everest. These samples were analyzed for Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb,...

Full description

Bibliographic Details
Published in:Science of The Total Environment
Main Authors: Lee, Khanghyun, Do Hur, Soon, Hou, Shugui, Hong, Sungmin, Qin, Xiang, Ren, Jiawen, Liu, Yapping, J.R. Rosman, Kevin, Barbante, Carlo, Boutron, Claude, F.
Other Authors: Korea Polar Research Institute (KOPRI), State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences Beijing (CAS)-Chinese Academy of Sciences Beijing (CAS), Department of Imaging and Applied Physics, Curtin University, Environmental Sciences Department, University of Ca’ Foscari Venice, Italy, Institute for the Dynamics of Environmental Processes-CNR, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://insu.hal.science/insu-00379641
https://doi.org/10.1016/j.scitotenv.2008.06.022
Description
Summary:International audience A series of 42 snow samples covering over a one-year period from the fall of 2004 to the summer of 2005 were collected from a 2.1-m snow pit at a high-altitude site on the northeastern slope of Mt. Everest. These samples were analyzed for Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Sb, Pb, and Bi in order to characterize the relative contributions from anthropogenic and natural sources to the fallout of these elements in central Himalayas. Our data were also considered in the context of monsoon versus non-monsoon seasons. The mean concentrations of the majority of the elements were determined to be at the pg g− 1 level with a strong variation in concentration with snow depth. While the mean concentrations of most of the elements were significantly higher during the non-monsoon season than during the monsoon season, considerable variability in the trace element inputs to the snow was observed during both periods. Cu, Zn, As, Cd, Sb, and Bi displayed high crustal enrichment factors (EFc) in most samples, while Cr, Ni, Rb, and Pb show high EFc values in some of the samples. Our data indicate that anthropogenic inputs are potentially important for these elements in the remote high-altitude atmosphere in the central Himalayas. The relationship between the EFc of each element and the Al concentration indicates that a dominant input of anthropogenic trace elements occurs during both the monsoon and non-monsoon seasons, when crustal contribution is relatively minor. Finally, a comparison of the trace element fallout fluxes calculated in our samples with those recently obtained at Mont Blanc, Greenland, and Antarctica provides direct evidence for a geographical gradient of the atmospheric pollution with trace elements on a global scale.