Modeling historical long-term trends of sulfate, ammonium, and elemental carbon over Europe: A comparison with ice core records in the Alps

International audience The regional EMEP chemical transport model has been run for the 1920–2003 period and the simulations compared to the long-term seasonally resolved trends of major inorganic aerosols (sulfate and ammonium) derived from ice cores extracted at Col du Dôme (CDD, 4250 m above sea l...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Fagerli, Hilde, Legrand, Michel, Preunkert, Susanne, Vestreng, Vigdis, Simpson, David, A., Cerqueira, Mario
Other Authors: Research and Development Department, Norwegian Meteorological Institute Oslo (MET), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Departamento de Ambiente e Ordenamento, Universidade de Aveiro, European Commission's Fifth Framework Program in the form of the CARBOSOL Project (contract EVK2-2001-00067)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2007
Subjects:
Online Access:https://insu.hal.science/insu-00376249
https://insu.hal.science/insu-00376249/document
https://insu.hal.science/insu-00376249/file/2006JD008044.pdf
https://doi.org/10.1029/2006JD008044
Description
Summary:International audience The regional EMEP chemical transport model has been run for the 1920–2003 period and the simulations compared to the long-term seasonally resolved trends of major inorganic aerosols (sulfate and ammonium) derived from ice cores extracted at Col du Dôme (CDD, 4250 m above sea level, French Alps). Source-receptor calculations have been performed in order to allocate the sources of air pollution arriving over the Alps. Spain, Italy, France, and Germany are found to be the main contributors at CDD in summer, accounting for 50% of sulfate and 75% of ammonium. In winter more European wide and trans-Atlantic contributions are found. The relative impact of these sources remains similar over the whole Alpine massif although transport from US and emissions from Spain contribute less as we move eastward from CDD, toward other alpine ice core drill sites like Colle Gnifetti (CG) in the Swiss Alps. For sulfate, the CDD ice core records and the simulated trends match very well. For ammonium, the trend simulated by the model and the summer ice core record are in reasonable agreement, both showing greater changes in ammonium concentrations than would be suggested by historical ammonia emissions. Motivated by a such good agreement between simulations of past atmospheric concentrations and ice core records for inorganic aerosol species, we also use the model to simulate trends in elemental carbon for which less information on past emission inventories are available.