“Water” abundance at the surface of C-complex main-belt asteroids

International audience Abstract : Recently published space-based observations of main-belt asteroids with the AKARI telescope provide a full description of the 3-μm band, related to the presence of OH bearing minerals. Here, we use laboratory spectra of carbonaceous chondrites obtained under control...

Full description

Bibliographic Details
Published in:Icarus
Main Authors: Beck, Pierre, Eschrig, Jolantha, Potin, Sandra, Prestgard, Trygve, Bonal, Lydie, Quirico, Eric, Schmitt, B
Other Authors: Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
H2O
Online Access:https://hal.science/hal-03098711
https://hal.science/hal-03098711/document
https://hal.science/hal-03098711/file/S0019103520304681.pdf
https://doi.org/10.1016/j.icarus.2020.114125
Description
Summary:International audience Abstract : Recently published space-based observations of main-belt asteroids with the AKARI telescope provide a full description of the 3-μm band, related to the presence of OH bearing minerals. Here, we use laboratory spectra of carbonaceous chondrites obtained under controlled atmosphere (CI,CM,CO,CV,CR Tagish Lake) to derive spectral metrics related to the water content in the samples. After testing several spectral metrics, we use a combination of band depth at 2.75 μm and 2.80 μm that shows a correlation with [H2O] in the sample determined by TGA, though with a high uncertainty (4 wt. % H2O). This relation is used to determine water content at the surface of large Ccomplex main-belt asteroids and discuss the origin of the variability found. On average C-complex Main-Belt Asteroids (MBA) have water contents of 4.5 wt.% (volume average, (1) Ceres excluded), significantly lower than average CM chondrites. The estimated water content for the most hydrated asteroids are lower than those of the most hydrated meteorites, a difference that could be attributed to space-weathering. An anticorrelation is also present between water content and overall spectral slope, which is opposite to expectation from laboratory simulations of space weathering on dark carbonaceous chondrites. This suggests that part of the variability in the surface hydration among the different C-complex asteroids is not due to space-weathering, but to the composition of surface material. When applied to Ceres, the hygrometer presented in this work enables us to estimate that at least 1.22 wt. % of the hydrogen is present in the form of organics. This richness in organics strengthens the connection between Ceres and cometary materials.