Optimal Boundary Conditions for ORCA-2 Model

International audience A 4D-Var data assimilation technique is applied to a ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of the boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of the boundary c...

Full description

Bibliographic Details
Published in:Ocean Dynamics
Main Author: Kazantsev, Eugene
Other Authors: Modelling, Observations, Identification for Environmental Sciences (MOISE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://inria.hal.science/hal-00764570
https://inria.hal.science/hal-00764570/document
https://inria.hal.science/hal-00764570/file/orca.pdf
https://doi.org/10.1007/s10236-013-0639-8
Description
Summary:International audience A 4D-Var data assimilation technique is applied to a ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of the boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of the boundary conditions on the solution is analyzed as in the assimilation window and beyond the window. It is shown that optimal conditions for vertical operators allows to get stronger and finer jet streams (Gulf Stream, Kuroshio) in the solution. Analyzing the reasons of the jets reinforcement, we see that the major impact of the data assimilation is made on the parametrization of the bottom boundary conditions for lateral velocities u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.