Desenvolvimento e aplicação do pacote computacional LUMPAC

Metodologias te´oricas s˜ao ´uteis para complementar investigac¸˜oes experimentais e guiar novos experimentos envolvendo compostos luminescentes de lantan´ıdeos. A ausˆencia de uma ferramenta computacional contendo tais m´etodos motivou o desenvolvimento do LUMPAC. Se por um lado o LUMPAC difundiu o...

Full description

Bibliographic Details
Main Author: DUTRA, José Diogo de Lisboa
Other Authors: FREIRE, Ricardo Oliveira, SIMAS, Alfredo Mayall, http://lattes.cnpq.br/0079099947922025, http://lattes.cnpq.br/9039283386176018
Format: Doctoral or Postdoctoral Thesis
Language:Portuguese
Published: Universidade Federal de Pernambuco 2017
Subjects:
Online Access:https://repositorio.ufpe.br/handle/123456789/20175
Description
Summary:Metodologias te´oricas s˜ao ´uteis para complementar investigac¸˜oes experimentais e guiar novos experimentos envolvendo compostos luminescentes de lantan´ıdeos. A ausˆencia de uma ferramenta computacional contendo tais m´etodos motivou o desenvolvimento do LUMPAC. Se por um lado o LUMPAC difundiu o uso dessas metodologias, por outro as suas limitac¸˜oes tamb´em foram evidenciadas. Nesse sentido, pˆode-se conhecer melhor quais m´etodos merecem uma atenc¸˜ao especial, a saber: c´alculo dos parˆametros de intensidade (Ωλ), c´alculo da energia dos estados excitados dos ligantes e c´alculo da taxa de emiss˜ao n˜ao-radiativa (Anrad). O objetivo geral do presente trabalho de doutoramento consiste em corrigir algumas dessas limitac¸˜oes. Quantoaoc´alculodosΩλ,conseguimosatenuaroproblemacomumanovaformadeajustedos fatores de carga e das polarizabilidades atrav´es de um procedimento que foi denominado de Modelo da UnicidadeQDC, o qual faz uso de um conjunto bastante reduzido de parˆametros (Q,D eC). A importˆancia do ajusteQDC ´e que todas as quantidades derivadas se tornam tamb´em ´unicas para uma dada geometria do complexo, incluindo um esquema proposto de partic¸˜ao qu´ımico da taxa de emiss˜ao radiativa (Arad) em termos dos efeitos dos ligantes. Para demonstrar uma das poss´ıveis aplicac¸˜oes dessa partic¸˜ao, foi considerado o caso de complexos tern´arios de Eu3+ de ligantes n˜ao-iˆonicos repetidos e com os ligantes betadicetonatos DBM, TTA e BTFA. A partic¸˜ao ordenou perfeitamente a combinac¸˜ao n˜ao ´obvia de pares de ligantes n˜ao-iˆonicos que levam aos compostos misturados com os maiores valores deAexp rad. Quanto ao c´alculo dos estados excitados dos ligantes, ´e proposta uma parametrizac¸˜ao do m´etodo CIS baseadonaaproximac¸˜aoNDDO,exclusivamenteparasistemaslantan´ıdicos. Al´emdisso,realizamosumestudoavaliativodemetodologiasTDDFTaplicadasaoc´alculodeestadosexcitados de ligantes em complexos de lantan´ıdeos. Dentre os funcionais e func¸˜oes de base avaliados, a combinac¸˜ao LC-ωPBE/6-31G(d) foi aquela que forneceu as energias tripleto mais concordantes com os dados obtidos na literatura, sendo o erro m´edio absoluto correspondente em torno de 1600 cm−1. Atrav´es da parametrizac¸˜ao do modelo NDDO-CIS implementado no programa ORCA foi poss´ıvel obter um modelo semiemp´ırico para o c´alculo da energia tripleto de complexosdelantan´ıdeocom qualidade bem superiora da melhormetodologiaTDDFT avaliada. CNPQ Theoretical methodologies are useful to complement experimental investigations, and to guide new experiments involving luminescent lanthanide compounds. The lack of a software containing these methods motivated us to the development of the user friendly software package LUMPAC. And indeed, LUMPAC is slowly popularising the use of these theoretical methodologies - methodologies that are being put to more frequent tests, and are, consequently, slowly revealing their limitations. In this sense, we identified which aspects of the methods would deserve a more special attention, namely: intensity parameters calculations (Ωλ), calculation of the excited state energies of the ligands, and the calculation of the non-radiative decay rate (Anrad). The overall objective of this doctoral work is to correct some of these limitations as wellastoadvancenewdevelopments. RegardingtheΩλ calculation,wemitigatedthisproblem with a new way to adjust the charge factors and polarizabilities through a procedure we called theQDC Uniqueness Model, which makes use of a fairly small set of adjustaeble parameters (Q,D, andC). The importance of theQDC adjustment is that all derived quantities become also unique for a given complex geometry, including the chemical partition of the radiative emission rate (Arad) in terms of the effects of the ligands, which is being advanced here. To demonstrate one of the possible applications of this chemical partition, we address the case of repeating non-ionic ligand ternary complexes of europium(III) with DBM, TTA, and BTFA. The chemical partition perfectly ordered the non-obvious combination of pairs of non-ionic ligands that led to the mixed ligand compounds with the highest values ofAexp rad . Regarding the calculation of the excited states of the ligands, a new parametrization of the CIS method based on the NDDO approximation is being proposed, exclusively for lanthanide complexes. In addition, we carried out a study to evaluate some TDDFT methodologies for the calculation of excited states of ligands in lanthanide complexes. Among the functionals and basis sets evaluated, the combination LC-ωPBE/6-31G(d) was the one that led to the lowest UME (unsigned mean error), of around 1600 cm−1, for the triplet energies in comparison with data from the literature. The parametrization of the NDDO-CIS model implemented into ORCA provided a semiempirical method for the triplet energy calculation of lanthanide complexes with better predictionpower thanthebestassessed TDDFT method.