Fracture characteristics from two reactivated basement fault zones: examples from Norway and Shetland

Detailed analyses of fracture attributes developed in basement rocks associated with two, crustal-scale faults, have enabled the characteristics and evolution of the fracture system geometry to be documented quantitatively. Data sets of fracture attributes have been collected adjacent to faults with...

Full description

Bibliographic Details
Main Author: Sleight, Janine Michelle
Format: Thesis
Language:unknown
Published: 2001
Subjects:
Online Access:http://etheses.dur.ac.uk/4140/
http://etheses.dur.ac.uk/4140/1/4140_1659-vol1.pdf
http://etheses.dur.ac.uk/4140/2/4140_1659-vol2.pdf
Description
Summary:Detailed analyses of fracture attributes developed in basement rocks associated with two, crustal-scale faults, have enabled the characteristics and evolution of the fracture system geometry to be documented quantitatively. Data sets of fracture attributes have been collected adjacent to faults within the Møre-Trøndelag Fault Complex (MTFC) in Central Norway, and the Walls Boundary Fault System (WBFS) in Shetland. Both structures are of Palaeozoic origins and contain multiply reactivated fault strands that extend offshore to bound several hydrocarbon-rich sedimentary basins of Mesozoic-Cenozoic age along the North Atlantic margin. Fracture characteristics from the MTFC were measured within one dominant lithology (acid gneiss) and therefore each data set of fracture characteristics is directly comparable. A number of different fracture parameters were measured using either 1-D or 2-D techniques and were collected over four data scales. These data indicate different signatures for the two main faults within the MTFC: the Verran Fault (VF), a highly reactivated structure and the Hitra-Snasa Fault (HSF), which has experienced little reactivation, and also for a smaller, kinematically simple fault, the Elvdalen Fault (EF). The parameters measured are the exponent values from exponentially distributed spacing and length data sets, mean fracture spacing, fracture density, mean fracture length, fracture intensity and fracture connectivity (defined by the numbers of fractures and nodes per cluster, fracture cluster length and the number of nodes per unit area). Based on analyses of these parameters, the VF is characterised by a tall peak in values (or trough for measurements such as mean length and mean spacing), with a wide zone (-500m) of above-background values to the NW of the Verran Fault Plane. The HSF on the other hand is characterised by a tall and narrow zone of above-background values (or below for mean spacing and mean length parameters), which decrease to background levels within 100m either side of the ...