2D Unstructured Mesh Generation For Oceanic And Coastal Tidal Models From A Localized Truncation Error Analysis With Complex Derivatives

A method for computing target element size for tidal, shallow water flow is developed and demonstrated. The method, Localized truncation error analysis with complex derivatives (LTEA-CD) utilizes localized truncation error estimates of the linearized shallow water momentum equations consisting of co...

Full description

Bibliographic Details
Main Authors: Parrish, D. M., Hagen, S. C.
Format: Text
Language:unknown
Published: STARS 2007
Subjects:
Online Access:https://stars.library.ucf.edu/scopus2000/6438
Description
Summary:A method for computing target element size for tidal, shallow water flow is developed and demonstrated. The method, Localized truncation error analysis with complex derivatives (LTEA-CD) utilizes localized truncation error estimates of the linearized shallow water momentum equations consisting of complex derivative terms. This application of complex derivatives is the chief way in which the method differs from a similar existing method, LTEA. It is shown that LTEA-CD produces results that are essentially equivalent to those of LTEA (which in turn has been demonstrated to be capable of producing practicable target element sizes) with reduced computational cost. Moreover, LTEA-CD is capable of computing truncation error and corresponding target element sizes at locations up to and including the boundary, whereas LTEA can be applied only on the interior of the model domain. We demonstrate the convergence of solutions over meshes generated with LTEA-CD using an idealized representation of the western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico.