Discussion: “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions” (Hu and Li, ASME J. Offshore Mech. Arct. Eng., 140(1), p. 011901)

The work by Hu and Li (2018, “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions,” ASME J. Offshore Mech. Arct. Eng., 140(1), p. 011901) presents the numerical simulation of a high-solidity Wells turbine by means of a computational fluid dynamics (CFD) (Reynolds-averaged Navi...

Full description

Bibliographic Details
Published in:Journal of Offshore Mechanics and Arctic Engineering
Main Authors: Tiziano Ghisu, Francesco Cambuli, Pierpaolo Puddu, Irene Virdis, Mario Carta
Other Authors: Ghisu, Tiziano, Cambuli, Francesco, Puddu, Pierpaolo, Virdis, Irene, Carta, Mario
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/11584/262166
https://doi.org/10.1115/1.4042875
Description
Summary:The work by Hu and Li (2018, “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions,” ASME J. Offshore Mech. Arct. Eng., 140(1), p. 011901) presents the numerical simulation of a high-solidity Wells turbine by means of a computational fluid dynamics (CFD) (Reynolds-averaged Navier–Stokes (RANS)) approach. A key aspect highlighted by the authors is the presence of a hysteretic loop in the machine's performance curves, due (according to their explanation) to the interaction of vortices shed by the blade with the blade circulation, which is responsible for the aerodynamic forces. It is our opinion that this work contains some serious errors that invalidate the results. In this brief discussion, we aim to demonstrate how the hysteresis found and discussed by the authors should not be present in the turbine analyzed in Hu and Li (2018, “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions,” ASME J. Offshore Mech. Arct. Eng., 140(1), p. 011901), and it is unlikely to be present in any Wells turbine. The fact that Hu and Li find hysteresis in their simulations is most likely caused by numerical errors due to an insufficient temporal discretization. This and other inaccuracies could have been avoided with a more careful consideration of the available literature.