Lipase-catalyzed preparation of mono- and diesters of ferulic acid

Lipophilic and stable derivatives of ferulic acid are required to improve its efficacy in fatty foods and to optimize its use in cosmetic and pharmaceutical preparations. We report an improved synthesis of ferulic acid monoesters (ethyl ferulate and lauryl ferulate) using immobilized lipase from Can...

Full description

Bibliographic Details
Main Authors: Sandoval, G., Quintana, P.G., Baldessari, A., Ballesteros, A.O., Plou, F.J.
Format: Journal/Newspaper
Language:unknown
Subjects:
Online Access:https://hdl.handle.net/20.500.12110/paper_10242422_v33_n2_p89_Sandoval
Description
Summary:Lipophilic and stable derivatives of ferulic acid are required to improve its efficacy in fatty foods and to optimize its use in cosmetic and pharmaceutical preparations. We report an improved synthesis of ferulic acid monoesters (ethyl ferulate and lauryl ferulate) using immobilized lipase from Candida antarctica B (CALB) in diisopropyl ether (DIPE). Maximum yields were 89% and 85% in 200 h for ethyl and lauryl ferulate, respectively. Ethyl ferulate was further acylated with vinyl esters to form ferulate diesters. 4-Acetoxy-ethyl ferulate was obtained with the immobilized lipase from Alcaligenes sp. (QLG) with 59% yield in 72 h, whereas 4-dodecanoyloxy-ethyl ferulate (a new compound) was synthesized with 52% yield in 72 h using CALB. DIPE was the best solvent for the transesterifications. Finally, the anti-inflammatory activity of the synthesized derivatives was evaluated in vitro; the compounds bearing a dodecyl chain showed improved anti-inflammatory activity compared with short-chain esters. © 2015 Informa UK, Ltd.